1. The angle of an integrated optic Y-branch is designed to be small to avoid
 a. Guided mode losses
 b. Radiation mode losses
 c. Substrate mode losses
 d. Cladding mode

2. The operation of an RF spectrum analyser is based on
 a. Electro-optic effect
 b. Magneto-optic effect
 c. Acousto-optic effect
 d. Thermo-optic effect

3. In a 4 x 4 Electro-optic switch is configured using five 2x2 EO switches. A pass through state is defined as 1-1, 2-2, 3-3, 4-4.
 a. Any input output combination is possible.
 b. All input output combinations are not possible.
 c. Pass through state is possible (1-1, 2-2, 3-3, 4-4)
 d. Reversal state is possible (1-4, 2-3, 3-2, 4-1)

4. The refractive index change due to electro-optic effect varies
 a. Directly with electrode voltage and inversely with electrode gap
 b. Inversely with electrode voltage and directly with electrode gap
 c. Directly with both electrode voltage and electrode gap
 d. Inversely with both electrode voltage and electrode gap

5. A SAW IDT can create the following IO device
 a. Tapered waveguide
 b. Grating
 c. Y-branch
 d. Directional coupler

6. The special frequency components of a beam input to an integrated optic waveguide can be interpreted as rays with
 a. Different angles
 b. Wavelengths
 c. Velocities
 d. Phases

7. A ridge tapered optical waveguide has refractive index varying along
 a. Width only
 b. Depth only
 c. Propagation direction
 d. Width as well as depth

8. The angle of an IO Y-branch is designed to be small to
 a. reduce radiation losses
 b. reduce absorption losses
 c. maintain single mode operation
 d. avoid coupling between output ports
9. The following effect creates waveguide grating
 a. non-linear effect
 b. Electro-optic effect
 c. Acousto-optic effect
 d. Thermo optic effect

10. A fiber optic gyroscope used the following interferometer
 a. Sagnac interferometer
 b. Mach Zhender interferometer
 c. Michelson interferometer
 d. Fizeau interferometer