Assignment 5

The due date for submitting this assignment has passed. As per our records, you have not submitted this assignment.

1. The channel length of a MOSFET should be _____ to minimize the 1/f noise power of the amplifier:
 a. Large
 b. Small
 c. Medium
 d. Any
 Answer: b

2. In the circuit of Fig. 2, we wish to achieve a 0.1 dB bandwidth of 1 GHz with a load capacitance of 2 pF. What is the maximum (low-frequency) gain that can be achieved with a given distortion characteristic of 1%? Answer: G0 = 0.1 V/V and neglect the effect of the input and other capacitances. Assume Thermal Voltage, Vth = 26 mV and also write the sign for the gain.

3. The zero arising in a 2-stage OPAMP due to compensation capacitor makes the phase more _____ and decreases the magnitude of the gain:
 a. increases
 b. decreases
 c. remains the same
 d. It does not change
 Answer: a

4. The zero arising due to Cc can be nullified by inserting a _______ in series:
 a. common drain
 b. common source
 c. common gate
 d. commons
 Answer: b

5. There is no benefit of increasing chopping frequency beyond twice the corner frequency:
 a. True
 b. False
 Answer: b

6. For an inverting phase- shift, which of the following would hold true?
 a. $\Gamma_{in} = \Gamma_{out}$
 b. $\Gamma_{in} = \Gamma_{out}$
 c. $\Gamma_{in} = \Gamma_{out}$
 d. $\Gamma_{in} = \Gamma_{out}$
 Answer: a

Common Data for Question 7 & 8
A particular small-signal gain BTF has f0 of 500 MHz and $C_{ox} = 0.01 \text{ pF}$ when operated at $V_{dd} = 1.0 \text{ V}$. What is C_{ox} in this situation in fF? Assume Thermal Voltage, $V_{th} = 26 \text{ mV}$

7. Also, find g_{0} in this situation in mA/V?

8. A particular small-signal BTF has f0 of 200 MHz and $C_{ox} = 0.01 \text{ pF}$ when operated at $V_{dd} = 1.0 \text{ V}$. What is C_{ox} in this situation in fF? Assume Thermal Voltage, $V_{th} = 26 \text{ mV}$

9. Does charge stabilization help mitigating thermal noise?
 a. Yes
 b. No
 c. I do not know
 Answer: a

1.0 point

1.0 point