1. Linear prediction analysis is used to obtain a 6-order all-pole model for a segment of voiced speech that was sampled at a rate of $F_s = 10000$ Hz. Determine the root angle of the pole corresponding to first two formant. $F_1=288\,\text{Hz}$, $F_2=719\,\text{Hz}$, $F_3 = 2294\,\text{Hz}$, $BW_1=92\,\text{Hz}$, $BW_2=65\,\text{Hz}$, $BW_3=50\,\text{Hz}$

A. Range of 200 to 210 and range of 350 to 360.
B. Range of 100 to 110 and range of 250 to 260.
C. Range of 150 to 160 and range of 300 to 310.
D. Range of 180 to 190 and range of 280 to 290.

$[F_1 = 288 \, \text{Hz}, F_2 = 719 \, \text{Hz}, F_s = 10 \, \text{KHz}, \theta_1=(F_1\times2\pi)/F_s = 10.360 ; \theta_2=(F_2\times2\pi)/F_s = 25.880]$

2. 5 sec. speech segment is encoded using LPC coefficient and the LPC coefficient are extracted for each frame (frame length (L) = 5 pitch period) with a frame rate 100 frames/s. How many frames’s LPC coefficient can be extract from the above speech signal? Where the F_0 of the speech segment is 250 Hz and sampling frequency $F_s=16\,\text{kHz}$

A. 450 Frames
B. 600 Frames
C. 500 Frames
D. 550 Frames

[No. of frames in 5 sec. = 5 \times 100 = 500 frames]

3. 2 sec. speech segment is encoded using LPC coefficient and the LPC coefficient are extracted for each frame (frame length (L) = 5 pitch period) with a frame rate 100 frames/s. Determine the required order of the LPC analysis. Where the F_0 of the speech segment is 250 Hz and sampling frequency $F_s=16\,\text{kHz}$.

A. 15 - 17
B. 32 - 34
C. 25 - 27
D. 20 - 22

[F_s = 16 \, \text{kHz}; \text{Order of LPC} = (F_s/1000) + 2 + 2 = (16\times10^3/10^3) +2 +2 = 20;
and (F_s/1000) + 2 + 4 = (16\times10^3/10^3) +2 +4 = 22]

4. A signal is sampled at 16 KHz, 16 bit, encoded with 16th order LPC. Each of the LPC coefficients is encoded with 2 byte, Gain in 2 byte. Voiced unvoiced F_0 information is encoded using 1 byte. Calculate the compression ratio if frame rate is 100 frame/sec?
5. A speech signal frame has energy \(E_n^0 = 2000 \) using the autocorrelation method the frame is analyzed and 3 PARCOR coefficient \(\{k_1, k_2, k_3\} \) are computed. Find the energy of the linear prediction residual \(E_n^3 = \sum m e_n^2[m] \) that would obtain by inverse filtering the speech signal frame. The inverse filter is designed using the above 3 PARCOR coefficients. Where

\[
k_1 = 0.52; \quad k_2 = -0.25; \quad k_3 = 0.36
\]

A.
B.
C.
D.

\[
E_n^3 = E_n^0(1-K_1^2)(1-K_2^2)(1-K_3^2)
\]
\[
= 2000(1-(0.52)^2)(1-(-0.25)^2)(1-(0.36)^2) = 2000 \times 0.73 \times 0.937 \times 0.871 = 1191.54
\]

6. If the order of the LPC analysis is 3 and LPC coefficients are \(\{\alpha_1, \alpha_2, \alpha_3\} \) compute the model gain for a signal \(x[n] = \{1, 2, 1, -1, 2\} \) where \(\alpha_1 = 0.52; \quad \alpha_2 = -0.25; \quad \alpha_3 = 0.36
\]

A. Range of 1 to 1.5
B. Range of 2 to 2.5
C. Range of 5 to 5.5
D. Range of 3 to 3.5

\[
G = 5.36; \quad \text{So, } G = \sqrt{5.36} = 2.315
\]

7. Figure-1 represents the LPC Spectrum of a speech segment determine the order of the LPC analysis.
8. A voiced speech signal frame analyzed using the autocorrelation method and 3 PARCOR coefficients \(\{k_1, k_2, k_3\} \) are computed. If the same speech signal segment is generated from using lossless tube modeling and cross sectional area of the first tube section is 1 derive the cross sectional area of the other tubes. Where

\[
\begin{align*}
 k_1 &= 0.52; \quad k_2 = -0.25; \quad k_3 = 0.36
\end{align*}
\]

A. \(A_1 = 1; \ A_2 = \text{Range of 7 to 8}; \ A_3 = \text{Range of 5 to 6}; \ A_4 = \text{Range of 8 to 9} \)
B. \(A_1 = 1; \ A_2 = \text{Range of 5 to 6}; \ A_3 = \text{Range of 3 to 4}; \ A_4 = \text{Range of 6 to 7} \)
C. \(A_1 = 1; \ A_2 = \text{Range of 3 to 4}; \ A_3 = \text{Range of 1 to 2}; \ A_4 = \text{Range of 4 to 5} \)
D. \(A_1 = 1; \ A_2 = \text{Range of 9 to 10}; \ A_3 = \text{Range of 7 to 8}; \ A_4 = \text{Range of 10 to 11} \)

\[A_1 = 1; \ A_2 = 3.166; \ A_3 = 1.9; \ A_4 = 4.036\]

9. Lattice formulation of \(i^{th} \) order prediction error filter was defined as given in equations. Which one of the following figures indicates the signal flow graph of the error filter?

\[
\begin{align*}
 e^i[m] &= e^{i-1}[m] - k_i b^{i-1}[m - 1] \\
 b^i[m] &= b^{i-1}[m - 1] - k_i e^{i-1}[m] \\
 e^0[m] &= b^0[m] = s[m]
\end{align*}
\]

A.

B.

[Image of signal flow graphs]
10. Autocorrelation method based 20th order LPC analysis was performed for a voiced speech signal with the frame rate of 100 frame/sec. If the length of the window used for this analysis is 20 ms determine length of the error signal [where sampling frequency of the speech signal is 16 kHz].

A. 253
B. 551
C. 153
D. 341