Week 8 Assignment 8

1. Determine the probability of:
 a. A coin being biased and tails being more likely
 b. A coin being fair and tails being more likely
 c. A coin being biased and heads being more likely
 d. A coin being fair and heads being more likely

2. If x and y are uncorrelated random variables, then which of the following statements is true?
 a. x and y are independent
 b. x and y are dependent
 c. x and y are not dependent or uncorrelated
 d. x and y are independent

3. The correlation function of a waveguide tap, $\Gamma(z)$, is shown below.

 ![Image of the correlation function of a waveguide tap, $\Gamma(z)$](image)

 - The value of $\Gamma(0)$ is:
 a. 0
 b. 1
 c. Some of these
 - Show whether the following statements are true or false:
 a. The following function is a valid correlation function of a waveguide tap, $\Gamma(z)$:
 b. Check the validity of the power spectral density.
 c. False
 - Determine the two-sided exponential power r.m.s. noise to infinite $\Gamma(z) = 0 = \Gamma'(z) = \frac{1}{\lambda} \exp(-\frac{|z|}{\lambda})$ where $\exp(z)$ is the exponential and λ is a constant with unit probability. The process is:
 a. Power correlation
 b. Second-order stationary
 c. With mean stationary
 d. No stationary in any sense
 - Experiment with power spectrum density:
 a. $\Gamma(z)$
 b. $\Gamma'(z)$
 - Consider a random process $X(t)$: a random variable X of a random variable and $x(t)$ is a deterministic function of time. $X(t)$ is:
 a. Ornstein–Uhlenbeck
 b. Gaussian
 c. Cannot be determined
 d. None of these
 - Experiment with $X(t)$ and $x(t)$ and explain the result:
 a. $\Gamma(x(t))$
 b. $\Gamma'(x(t))$
 c. $\Gamma(x(t))$ cannot be determined

4. Determine the waveguide tap's correlation function: $\Gamma(z)$.