Assignment 7

Due on 2023-06-16, 23:59 IST.

Consider a first order IIR filter

\[H(z) = \frac{1 - a}{1 - az^{-1}} \]

for \(|a| < 1 \).

(a) \(|H(e^{j\omega})| \) is constant and \(\angle H(e^{j\omega}) \) is linear in \(\omega \) for all \(\omega \) in the range from \(-\pi \) to \(\pi \).

(b) \(|H(e^{j\omega})| \) is constant but \(\angle H(e^{j\omega}) \) is not linear in \(\omega \) for all \(\omega \) in the range from \(-\pi \) to \(\pi \).

(c) \(|H(e^{j\omega})| \) is variable and \(\angle H(e^{j\omega}) \) is linear in \(\omega \) for all \(\omega \) in the range from \(-\pi \) to \(\pi \).

(d) \(|H(e^{j\omega})| \) is variable but \(\angle H(e^{j\omega}) \) is not linear in \(\omega \) for all \(\omega \) in the range from \(-\pi \) to \(\pi \).

A causal and stable low pass filter has impulse response \(h(n) \) and transfer function

\[H(z) = \frac{1}{(1 - \frac{1}{2}z^{-1})(1 - \frac{3}{4}z^{-1} + \frac{1}{4}z^{-2})} \].

A new filter is generated having impulse response \(h_1(n) = (-1)^n h(n) \). The transfer function of the filter is,

(a) \(H(z) = \frac{1 - \frac{1}{2}z^{-1}}{(1 + \frac{3}{4}z^{-1} - \frac{1}{4}z^{-1})} \).

(b) \(H(z) = \frac{1 - \frac{1}{2}z^{-1}}{(1 + \frac{1}{4}z^{-1} - \frac{1}{4}z^{-1})} \).

(c) \(H(z) = \frac{1 - \frac{1}{2}z^{-1}}{(1 + \frac{3}{4}z^{-1} - \frac{1}{4}z^{-1})} \).

(d) \(H(z) = \frac{1 - \frac{1}{2}z^{-1}}{(1 + \frac{3}{4}z^{-1} - \frac{1}{4}z^{-1})} \).

An IIR filter is designed from a prototype causal and stable analog filter \(h_a(n) = \frac{s^2 + 4s + 3}{s^2 + 3s + 1} \) by the impulse invariance method. In other words, if \(h_a(t) \) is the impulse response of the analog filter, then \(h_b(t) = T \cdot h_a(\frac{t}{T}) \) is the sampled version of \(h_a \). The IIR filter \(H(z) = \frac{N(z)}{D(z)} \) will then have \(|N(z)| = |D(z)| \).

(a) \(1 + (e^{-T} - e^{-3T})e^{-t} \).

(b) \(e^{-T} - e^{-3T} \).

(c) \(e^{-3T} - e^{-T} \).

(d) \(1 - e^{-T} - e^{-3T} \).

Given that \(H(z) \) is a causal and stable IIR filter, if \(z \) in \(H(z) \) is replaced by \(-z^2\), the resulting filter will be

(a) neither stable nor causal

(b) stable but non-causal

(c) unstable but causal

(d) both stable and causal

Given an analog filter \(H_a(s) = \frac{s^2 + 4s + 3}{s^2 + 3s + 1} \), and a digital filter \(H_d(z) \), designed from \(H_a(s) \) by the impulse invariance method, assuming sampling period \(T \). Then, \(H(z) \) is given by

(a) \(1 - e^{-T}\sin(2T)z^{-1} \).

(b) \(1 - e^{-T}\cos(2T)z^{-1} \).

(c) \(1 - e^{-T}\sin(2T)z^{-1} \).

(d) \(1 - e^{-T}\cos(2T)z^{-1} \).

Given an analog filter \(H_a(s) = \frac{s + 1}{s^2 + 2s + 1} \), and a digital filter \(H_d(z) \), designed from \(H_a(s) \) by the impulse invariance method, assuming sampling period \(T \). Then, \(H(z) \) is given by

(a) \(1 - e^{-T}\sin(2T)z^{-1} \).

(b) \(1 - e^{-T}\cos(2T)z^{-1} \).

(c) \(1 - e^{-T}\sin(2T)z^{-1} \).

(d) \(1 - e^{-T}\cos(2T)z^{-1} \).