Assignment 0

The due date for submitting this assignment has passed.
As per our records you have not submitted this assignment.

1) If \(t(t) \) is square pulse of height 1 and is located between \(t = -1 \) and \(t = +1 \), then \(x(2t - 1) \) is located between
- \(t = 0 \) and \(t = 2 \)
- \(t = 0 \) and \(t = 1/2 \)
- \(t = -1/2 \) and \(t = 0 \)
- \(t = 1 \) and \(t = 2 \)

No, the answer is incorrect.
Score: 0

Accrued Answers:
- \(t = 0 \) and \(t = 1/2 \)

2) For \(n \) even, solutions of the equation \(x^n + 1 = 0 \) are
- \(x = +j \)
- \(x = -j \)
- \(x = e^{\frac{2\pi k + \pi}{n}} \), \(k = 0, 1, \ldots, n - 1 \)
- \(x = e^{\frac{2\pi k - \pi}{n}} \), \(k = 0, 1, \ldots, n - 1 \)

No, the answer is incorrect.
Score: 0

Accrued Answers:
- \(x = e^{\frac{2\pi k + \pi}{n}} \), \(k = 0, 1, \ldots, n - 1 \)

3) \(H(s) \) is an analog filter with two zeros at \(s = a \) and \(s = b \), and three poles at \(s = A, s = B \) and \(s = C \). If \(H(s) \) is causal and stable, then
- \(a, b \) should be on the LHP in s-plane.
- \(a, b \) should be on the RHP in s-plane.
- \(A, B, C \) should be on the LHP in s-plane.
- \(A, B, C \) should be on the RHP in s-plane.

No, the answer is incorrect.
Score: 0

Accrued Answers:
- \(A, B, C \) should be on the LHP in s-plane.

4) If \(\delta(t) \) denotes the Dirac delta function, then convolution between \(\delta(t - 2\tau) \) and \(\delta(t + \tau) \) is
- \(\delta(t - \tau) \)
- \(\delta(t + \tau) \)
- \(\delta(t) \)

No, the answer is incorrect.
Score: 0

Accrued Answers:
- \(\delta(t - \tau) \)

5) Let \(x(t) \) consist of a periodic train of impulses with period \(T \), i.e.,
- \(x(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT) \). If the Fourier series expansion of \(x(t) \) is given by
- \(c_n = 1, \omega_0 = 2\pi/T \)
- \(c_n = 1, \omega_0 = 2\pi/T \)
- \(c_n = 1, \omega_0 = 2\pi/T \)
- \(c_n = 1, \omega_0 = 2\pi/T \)

No, the answer is incorrect.
Score: 0

Accrued Answers:
- \(c_n = 1, \omega_0 = 2\pi/T \)

6) The de function, \(x(t) = 1, -\infty < t < +\infty \) has Fourier transform \(X(j\omega) \) given by
- \(2\pi \delta(\omega) \)
- \(1, -\infty < \omega < +\infty \)
- \(\delta(\omega) \)
- Does not exist.

No, the answer is incorrect.
Score: 0

Accrued Answers:
- \(2\pi \delta(\omega) \)