Assignment 3

Week 3

Due on 04/04/16

Week 1

Week 2

Week 3

Question 1

The class of linear homogeneous differential equations of the form:

\[\frac{dy}{dx} + P(x) y = Q(x) \]

is known as a first-order linear differential equation. The solution to this equation can be found by integrating the following expression:

\[\int Q(x) e^{\int P(x) dx} dx \]

Question 2

Given the following system of differential equations:

\[\begin{align*}
\frac{dx}{dt} &= -2x + 3y \\
\frac{dy}{dt} &= 2x - y
\end{align*} \]

Find the general solution for the given system.

Question 3

Consider the following differential equation:

\[\frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + 4y = 0 \]

Determine the characteristic equation and solve for the general solution.

Question 4

Given the initial value problem:

\[\begin{align*}
\frac{dy}{dx} &= y \\
y(0) &= 1
\end{align*} \]

Find the solution to the differential equation.

Question 5

Consider the Laplace transform of the function:

\[f(t) = e^{-2t} \sin(3t) \]

Determine the Laplace transform \(F(s) \) and then find the inverse Laplace transform to obtain \(f(t) \).

Question 6

The heat equation is a partial differential equation of the form:

\[\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2} \]

where \(u(x,t) \) is the temperature distribution, \(t \) is time, \(x \) is position, and \(\alpha \) is the diffusivity. State the initial and boundary conditions for the heat equation.

Question 7

Consider the following system of linear equations:

\[\begin{align*}
2x + 3y &= 7 \\
4x - y &= 5
\end{align*} \]

Solve for the values of \(x \) and \(y \).

Question 8

Given the system:

\[\begin{align*}
\frac{dx}{dt} &= 2x - y \\
\frac{dy}{dt} &= x + 4y
\end{align*} \]

Find the eigenvalues and eigenvectors of the matrix associated with this system. Use these to find the general solution.

Question 9

Consider the function:

\[f(x) = \frac{1}{x} \]

Determine the domain of \(f(x) \) and find the derivative of \(f(x) \).

Question 10

For the wave function \(\psi(x,t) \) given by:

\[\psi(x,t) = A e^{i(kx - \omega t)} \]

Find the spatial and temporal frequencies as well as the wave number.

Question 11

The gravitational potential energy \(U \) of two masses \(m_1 \) and \(m_2 \) separated by a distance \(r \) is given by:

\[U = -\frac{G m_1 m_2}{r} \]

Compute the change in potential energy if the distance between the masses is doubled.

Question 12

Consider the following function:

\[f(x) = \begin{cases}
1 & \text{if } x < 0 \\
0 & \text{if } x = 0 \\
-1 & \text{if } x > 0
\end{cases} \]

Determine the derivative of \(f(x) \) at \(x = 0 \).