1. Consider an Inter Symbol Interference channel \(y(k) = \frac{3}{2} x(k) - \frac{1}{2} x(k-1) + v(k) \). Let an \(r = 2 \) tap channel equalizer be designed for this scenario based on symbols \(y(k+1), y(k) \) to detect \(x(k) \). Let symbols \(x(k) \) be IID zero-mean with dB Power \(P_d = 10 \) dB and dB noise variance \(\sigma^2 = 3 \) dB. What is the effective channel matrix \(H \) for this scenario

 a. \[
 \begin{bmatrix}
 -1/2 & 3/2 & 0 \\
 0 & -1/2 & 3/2 \\
 0 & 3/2 & -1/2 \\
 \end{bmatrix}
 \]

 b. \[
 \begin{bmatrix}
 3/2 & -1/2 & 0 \\
 0 & 3/2 & -1/2 \\
 \end{bmatrix}
 \]

 c. \[
 \begin{bmatrix}
 3/2 & -1/2 & 0 \\
 0 & 3/2 & -1/2 \\
 \end{bmatrix}^T
 \]

 d. \[
 \begin{bmatrix}
 3/2 & -1/2 & 0 \\
 0 & 3/2 & -1/2 \\
 \end{bmatrix}
 \]

 Ans (b)

2. Consider an Inter Symbol Interference channel \(y(k) = \frac{3}{2} x(k) - \frac{1}{2} x(k-1) + v(k) \). Let an \(r = 2 \) tap channel equalizer be designed for this scenario based on symbols \(y(k+1), y(k) \) to detect \(x(k) \). Let symbols \(x(k) \) be IID zero-mean with dB Power \(P_d = 10 \) dB and dB noise variance \(\sigma^2 = 3 \) dB. What are the covariance matrices of the input, noise vectors \(x(k), v(k) \) respectively for this scenario

 a. \(10I_{3x3}, 2I_{3x2} \)

 b. \(10I_{3x3}, 3I_{3x2} \)

 c. \(10I_{3x2}, 2I_{3x3} \)

 d. None of these

 Ans (a)

3. Consider an Inter Symbol Interference channel \(y(k) = \frac{3}{2} x(k) - \frac{1}{2} x(k-1) + v(k) \). Let an \(r = 2 \) tap channel equalizer be designed for this scenario based on symbols \(y(k+1), y(k) \) to detect \(x(k) \). Let symbols \(x(k) \) be IID zero-mean with dB Power \(P_d = 10 \) dB and dB noise variance \(\sigma^2 = 3 \) dB. What is the LMMSE equalizer vector \(c \) ?

 a. \[
 \begin{bmatrix}
 0.3344 \\
 5.463 \\
 \end{bmatrix}
 \]

 b. \[
 \begin{bmatrix}
 0.04497 \\
 0.6347 \\
 \end{bmatrix}
 \]

 c. \[
 \begin{bmatrix}
 0.03344 \\
 0.5463 \\
 \end{bmatrix}
 \]

 d. \[
 \begin{bmatrix}
 0.4497 \\
 6.347 \\
 \end{bmatrix}
 \]

 Ans (c)
4. Consider an Inter Symbol Interference channel \(y(k) = \frac{3}{2} x(k) - \frac{1}{2} x(k-1) + \nu(k) \). Let an \(r = 2 \) tap channel equalizer be designed for this scenario based on symbols \(y(k+1), y(k) \) to detect \(x(k) \). Let symbols \(x(k) \) be IID zero-mean with dB Power \(P_d = 10 \text{ dB} \) and dB noise variance \(\sigma^2 = 3 \text{ dB} \). What is the resulting LMMSE equalizer?
 a. \(\frac{-90}{2001} y(k + 1) + \frac{1270}{2001} y(k) \)
 b. \(\frac{-9}{2001} y(k + 1) + \frac{127}{2001} y(k) \)
 c. \(\frac{-9}{2691} y(k + 1) + \frac{127}{2691} y(k) \)
 d. \(\frac{-90}{2691} y(k + 1) + \frac{1270}{2691} y(k) \)
 Ans (d)

5. Consider an Inter Symbol Interference channel \(y(k) = \frac{3}{2} x(k) - \frac{1}{2} x(k-1) + \nu(k) \). Let an \(r = 2 \) tap channel equalizer be designed for this scenario based on symbols \(y(k+1), y(k) \) to detect \(x(k) \). Let symbols \(x(k) \) be IID zero-mean with dB Power \(P_d = 10 \text{ dB} \) and dB noise variance \(\sigma^2 = 3 \text{ dB} \). What is the MSE of LMMSE equalization?
 a. 1.638
 b. 2
 c. 1.75
 d. None of these
 Ans (a)

6. Consider an Inter Symbol Interference channel \(y(k) = \frac{3}{2} x(k) - \frac{1}{2} x(k-1) + \nu(k) \). Let an \(r = 2 \) tap channel equalizer be designed for this scenario based on symbols \(y(k+1), y(k) \) to detect \(x(k + 1) \) instead of \(x(k) \). Let symbols \(x(k) \) be IID zero-mean with dB Power \(P_d = 10 \text{ dB} \) and dB noise variance \(\sigma^2 = 3 \text{ dB} \). What is the LMMSE equalizer vector \(c \) ?
 a. \(\begin{bmatrix} 0.602 \\ 0.1672 \end{bmatrix} \)
 b. \(\begin{bmatrix} 0.0602 \\ 0.01825 \end{bmatrix} \)
 c. \(\begin{bmatrix} 0.602 \\ 0.507 \end{bmatrix} \)
 d. None of the above
 Ans (a)

7. Consider an Inter Symbol Interference channel \(y(k) = \frac{3}{2} x(k) - \frac{1}{2} x(k-1) + \nu(k) \). Let an \(r = 2 \) tap channel equalizer be designed for this scenario based on symbols \(y(k+1), y(k) \) to detect \(x(k + 1) \) instead of \(x(k) \). Let symbols \(x(k) \) be IID zero-mean with dB Power \(P_d = 10 \text{ dB} \) and dB noise variance \(\sigma^2 = 3 \text{ dB} \). What is the MSE of LMMSE equalization?
8. OFDM is a technology which is used in
 a. 4G LTE
 b. 3G HSDPA
 c. 2G GSM
 d. All of the above
 Ans a

9. The acronym OFDM stands for
 a. Optimal Frequency Diversity Module
 b. Orthogonal Fourier Dispersion Module
 c. Optimal Fourier Duplex Multiplexing
 d. Orthogonal Frequency Division Multiplexing
 Ans d

10. For an L-tap channel, what is the minimum length of cyclic prefix needed to lead to a circular convolution of the channel and input at the receiver?
 a. L
 b. $L-1$
 c. $L+1$
 d. $\left\lceil \frac{L}{2} \right\rceil$
 Ans b