Week 8--Assignment

The due date for submitting this assignment has passed. Due on 2016-09-18, 23:58 IST.

Submitted assignment

1) Let \(B_X \) and \(B_Y \) are two ROBDDs representing Boolean function \(f(a,b,c)=a'b+ac+bc' \) with variable ordering \(<a, b, c>\) and \(<c, a, b>\) respectively. Count the number of nodes in \(B_X \) and \(B_Y \).

\[
\begin{align*}
B_X &= 5, \quad B_Y = 5 \\
B_X &= 5, \quad B_Y = 6 \\
B_X &= 6, \quad B_Y = 5 \\
B_X &= 6, \quad B_Y = 6
\end{align*}
\]

No, the answer is incorrect.
Score: 0
Accepted Answers:
\(B_X = 6, \quad B_Y = 5 \)

2) Consider the Boolean function of 2-bit comparator, \(f(a_1,a_2,b_1,b_2) = (a_1 \text{XNOR} b_1) \cdot (a_2 \text{XNOR} b_2) \). Draw ROBDD to represent \(f \) with variable ordering \(< a_1, a_2, b_1, b_2>\) and find the number of nodes in it.

\[
\begin{align*}
&10 \\
&11 \\
&12 \\
&14
\end{align*}
\]

No, the answer is incorrect.
Score: 0
Accepted Answers:
11

3) Let \(f(a,b)=a'b+a'b+ab+ab'ab \) be a Boolean function. Which of the followings is true?

- \(f \) is independent of only \(a \)
- \(f \) is independent of only \(b \)
- \(f \) is independent of both \(a \) and \(b \)
- None of the above

No, the answer is incorrect.
Score: 0
4) Let \(f(a,b,c)=a'b' \cdot abc + a'c \) be a Boolean function. What is the negative Shannon cofactor of \(f \) with respect to \(c \)?

- \(a' \)
- \(b' \)
- \(c' \)
- \(a'b'+ab \)

No, the answer is incorrect.
Score: 0

5) Let \(B_f \) be a ROBDD of Boolean expression \(f \). If \(B_f \) contains only one node and that is labeled with 1, then which of the followings is true for \(f \)?

- \(f \) is not a valid Boolean expression
- \(f \) is not a satisfiable Boolean expression
- \(f \) is a valid Boolean expression
- None of the above

No, the answer is incorrect.
Score: 0

6) Let \(B_f \) be a ROBDD of a Boolean expression \(f \). If there exists 4 paths to terminal node 1 and 3 paths to terminal node 0 in \(B_f \), then what can we say about \(f \)?

- \(f \) is valid but not satisfiable
- \(f \) is valid and satisfiable
- \(f \) is neither valid nor satisfiable
- \(f \) is not valid but satisfiable

No, the answer is incorrect.
Score: 0

7) Let \(B_f \) be a OBDD representing Boolean function \(f(a,b,c)=a'b+b'c \) and \(B_g \) be another OBDD representing Boolean function \(g(a,b,c)=a'b \). Perform XOR operation on \(B_f \) and \(B_g \) (i.e., \(B_{\text{XOR}} = B_f \oplus B_g \)) and reduce it. Find the number of nodes and number of satisfying assignments in \(B_{\text{XOR}} \). Assume order of variables in all cases is \(<a, b, c> \).

- Nodes=4, Satisfying assignments =2
- Nodes=6, Satisfying assignments =2
- Nodes=8, Satisfying assignments =3
- Nodes=6, Satisfying assignments =3

No, the answer is incorrect.
Score: 0

8) Consider the Boolean function \(f(a,b,c,d)= ab'c + ab + c'd + bcd \). Construct ROBDD, \(B_f \), to represent \(f \). Construct ROBDDs \(B_X \) and \(B_Y \) to represent \(\text{restrict}(0,c, B_f) \) and \(\text{restrict}(1,c,B_f) \), respectively. Finally, construct ROBDD, \(B_Z \), to represent \(\text{exists}(c, B_f) \) using \(B_X \) and \(B_Y \). Find the number of nodes in \(B_f \), \(B_X \), \(B_Y \) and \(B_Z \). Assume order of variables in all cases is \(<a, b, c, d> \).

Nodes=4, Satisfying assignments =2

Nodes=4, Satisfying assignments =2
9) Let \(f(x, y) = x(y + x') \) be a Boolean function. Find the restrictions of \(f \) with respect to \(x \).

- \(0, xy \)
- \(x', xy \)
- \(0, y \)
- \(x', x+y \)

No, the answer is incorrect.
Score: 0
Accepted Answers:
\(0, y \)