Week 11 Assignment

The due date for submitting this assignment has passed. Due on 2016-10-06, 23:58 IST.

Submitted assignment

1) Which of the following statement is generally valid for a circuit?
 - All faults are “easy to test”
 - All faults are “difficult to test”
 - Few faults are “easy to test” and most others are “difficult to test”
 - Most faults are “easy to test” and few are “difficult to test”

 No, the answer is incorrect.
 Score: 0

 Accepted Answers:
 Most faults are “easy to test” and few are “difficult to test”

2) The test patterns for “easy to test faults” are derived by _____
 - Fault simulation algorithms
 - Sensitization–propagation -justification approach
 - Boolean Difference approach
 - All the above

 No, the answer is incorrect.
 Score: 0

 Accepted Answers:
 Fault simulation algorithms

3) The test patterns for “difficult to test faults” are derived by _____
 - Fault simulation algorithms
 - Sensitization–propagation -justification approach
 - Both (a) and (b)
 - Other than the above

 No, the answer is incorrect.
 Score: 0

 Accepted Answers:
 Sensitization–propagation -justification approach

4) Let us consider a 2-input AND gates shown below where the inputs are marked using notations from Roth’s 5-valued algebra. What is the output notation at the ? marked net i.e., output of gate G1?

https://onlinecourses.nptel.ac.in/noc16_ec08/unit?unit=103&assessment=121
5) Consider the figure referred in Q4. What is the output notation at the ? marked net i.e., output of gate G2?

No, the answer is incorrect.
Score: 0
Accepted Answers:
D

6) Consider the figure referred in Q4. What is the output notation at the ? marked net i.e., output of gate G3?

No, the answer is incorrect.
Score: 0
Accepted Answers:
X

7) If one wants to take the path 'e-f-g-h' shown below for propagating the fault effect to the output h. The signals labeled as 1, 2, 3 in the nets of the path are assigned in terms of Roth's 5 valued algebra. The signal value of the net labeled with 1 is _____.

No, the answer is incorrect.
Score: 0
Accepted Answers:
D'
8) Consider the figure referred in Q7. The signal value of the net labeled with 2 is _____.

- 0
- 1
- D
- X

No, the answer is incorrect.
Score: 0
Accepted Answers:
D

1 point

9) The signal value of the net labeled with 3 is _____.

- 0
- 1
- D
- D'

No, the answer is incorrect.
Score: 0
Accepted Answers:
D

1 point

10) The path "e-f-g-h" in figure referred in Q7 cannot be used for testing the s-a-0 fault because

- Fault cannot be sensitized
- Fault cannot be propagated to the output
- Justification conflict on the net "j"
- The statement is wrong. Path "e-f-g-h" in figure can be used for testing the s-a-0 fault.

No, the answer is incorrect.
Score: 0
Accepted Answers:
Justification conflict on the net "j"

1 point

11) Which is (are) the singular cover for a 2-input AND gate. Let us assume A, B are the input variables and the C is the output variable.

- A
- B
- A and B
- A or B

No, the answer is incorrect.
Score: 0
Accepted Answers:
A and B

1 point
24/07/2018

VLSI Design Verification and test - - Unit 14 - Combinational Circuit Test Pattern Generation

No, the answer is incorrect.
Score: 0
Accepted Answers:
All of the above

12) The D-frontier comprises gates whose output value is X and at least one of its input is ____.

- Only D
- Only D'
- Both (a) and (b)
- None

No, the answer is incorrect.
Score: 0
Accepted Answers:
Both (a) and (b)

13) Any gate in D-frontier can be used for fault ______.

- Sensitization
- Propagation
- Justification
- All of the above

No, the answer is incorrect.
Score: 0
Accepted Answers:
Propagation

14) Let us consider a circuit shown below. The only way to sensitize the s-a-0 fault on the net “b” is 1 point to make it to 1. The nets “e” and “i” are assigned as ______________.

- e=D, i=D
- e=D', i=D'
- e=D, i=D'
- e=D', i=D

No, the answer is incorrect.
Score: 0
Accepted Answers:
e=D, i=D

15) Considering the answer in Q14, which gate(s) is (are) treated as D-frontier?

- G1
- G2
- Both G1 and G2
16) The J-frontier comprises gates whose ____.
 - Output value is known but its inputs are not yet computed.
 - Output value is not known and its inputs are not yet computed.
 - Output value is known as well as its inputs are known.
 - Neither output value is known nor are its inputs known.
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 Both G1 and G2

17) Any gate in J-frontier can be used for fault ______.
 - Sensitization
 - Propagation
 - Justification
 - All of the above
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 Justification

18) Consider the circuit referred in Q14. Assume that it was decided that fault effect D be
 propagated via the net "j". So, j=D by forward implication. Which gate is the J-frontier?
 - G1
 - G2
 - Both G1 & G2
 - None
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 G1

19) For the J-frontier found in Q18 and propagating the fault effect D to the net "g", the net “f” must
 be set to ____.
 - 0
 - 1
 - X
 - D
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 0

20) Let us consider a simple digital circuit with a s-a-0 fault at the output of gate-1 shown below. To
 sensitize the s-a-0 fault, 1 has to be applied in the corresponding net, thereby making signal of the net as
 D. Now J- frontier and D-frontier needs to be computed. Gate 1 is ____ frontier.
21. Consider Level 2 and Level 3 of the circuit referred in Q20. The inputs of gate-2 and gate-3 are D, and the outputs are X. D-frontier is ___.

- gate-2
- gate-3
- gate-2 and gate-3
- gate-1, gate-2 and gate-3

No, the answer is incorrect.
Score: 0
Accepted Answers:
- gate-2 and gate-3

22. Consider the circuit referred in Q20. To justify the D at the output of gate-1 using backward implication, we get input (b,c) as ____.

- 1,1
- 1,0
- 0,1
- 0,0

No, the answer is incorrect.
Score: 0
Accepted Answers:
- 1,1