Assignment 3

Due on 2020-08-19, 23:59 UTC

1. Which of the following is INCORRECT?
 - The uniform depth of a steady beam increases with wavelength
 - Material changes can alter the guiding fiber.
 - Non of the above
 - The answer is incorrect.
 - The answer is correct.
 - Lower order modes are not confined into the guiding fiber.

2. Consider a dielectric waveguide a planar waveguide with $n_1 = 1.475$, $n_2 = 1.495$ and $2 \mu m$. Out of the waveguides, which waveguide with what mode will be the single mode?
 - None of the above
 - The answer is incorrect.
 - The answer is correct.

3. Out of the following, which may be the possible combination of the two-similar components of electric and magnetic fields for a point T-modes?
 - E_x, E_y, E_z, H_y, H_z
 - E_x, E_y, E_z, H_x, H_z
 - E_x, E_y, E_z, H_y, H_x
 - E_x, E_y, E_z, H_x, H_y

4. Determine the angle that the constant plane wave $x = 2 \mu m$ make with the direction of propagation for a planar waveguide with $n_1 = 1.475, d = 2 \mu m, n_2 = 1.495$.
 - 30°
 - 45°
 - 60°
 - 90°

5. Consider a planar waveguide with $n_1 = 1.46, d = 1 \mu m, n_2 = 1.5 \mu m$. The effective index of the 2nd mode is
 - 0
 - 1
 - 2
 - 3

6. Consider a planar waveguide with $n_1 = 1.45, d = 1 \mu m, n_2 = 1.6 \mu m$. Calculate the number of guided s-polarized and a-polarized modes for $n_2 = 2 \mu m$.
 - 1
 - 2
 - 3
 - 4

7. Consider a dielectric waveguide a planar waveguide with $n_1 = 1.475, n_2 = 1.495$ and $d = 2 \mu m$. Calculate the number of guided modes for $n_2 = 2 \mu m$.
 - 1
 - 2
 - 3
 - 4

8. Consider a symmetric waveguide with $n_1 = 1.46, n_2 = 1.5, n_m = 1.5$ and effective indices of separated TIR and TIR modes are 1.775 and 1.785, respectively at $d = 1.6 \mu m$. Calculate the angles that the constant plane waves make with the direction of propagation.
 - 30°, 50°
 - 45°, 70°
 - 60°, 90°
 - 75°, 105°

9. Consider a symmetric waveguide with $n_1 = 1.46, n_2 = 1.5, n_m = 1.5$ and effective indices of separated TIR and TIR modes are 1.775 and 1.785, respectively at $d = 1.6 \mu m$. Calculate the propagation constant of guided mode in the n_m region respectively.
 - 1.25, 1.35
 - 1.30, 1.40
 - 1.35, 1.45
 - 1.40, 1.50