Assignment 11

The due date for submitting this assignment has passed.

Due on 2021-04-07, 23:59 IST.

As per our records you have not submitted this assignment.

1. Consider a cavity of volume \(V \) filled with electromagnetic radiation, which follows the Planck distribution. Initially, the frequency of the maximum \(f_0 \) of the cavity is very small, the frequency is expanded to \(2f_0 \). Find the total absorbed energy density per unit frequency range of Planck distribution.

 [Hint: Assume the expansion to be adiabatic.]
 \[
 \frac{d\omega}{\omega^4} \to \frac{d\omega}{(2\omega)^4} = \frac{1}{2^4} \frac{d\omega}{\omega^4}
 \]

 No, the answer is incorrect.
 Accepted Answers:
 \[
 2^4
 \]

 2. The Universe is known to be permeated with a background radiation, which is called the relic of early universe following the Big Bang. This 1-point photon density is roughly, to within about one order of magnitude, for \(T = 3K \) is

 \[
 3000 \text{ cm}^3
 \]

 No, the answer is incorrect.
 Accepted Answers:
 \[
 100 \text{ cm}^3
 1000 \text{ cm}^3
 500 \text{ cm}^3
 \]

 3. The average number of photons in an enclosure of 22.4 litre at 273 K is

 \[
 \text{9.91} 	imes 10^3
 \]

 No, the answer is incorrect.
 Accepted Answers:
 \[
 6.93 	imes 10^3
 \]

4. Consider a gas of \(N \) spinless bosons in a d-dimensional box of volume \(V \), with a dispersion relation

 \[
 \epsilon = \sqrt{p^2 + m^2}
 \]

 where \(p \) and \(m \) are both arbitrary positive constants.

 a) The condition for \(n \) and \(m \) for Bose-Einstein condensation is

 No, the answer is incorrect.
 Accepted Answers:
 \[
 d < 1
 \]

5. The equation of state for this gas below the critical temperature \(T_c \) is

 No, the answer is incorrect.
 Accepted Answers:
 \[
 P = \frac{3}{4} \epsilon T_c / \xi(3/2)
 \]

6. The value of the degeneracy, \(j \) where the Bose-Einstein condensation takes place is

 No, the answer is incorrect.
 Accepted Answers:
 \[
 j = \frac{1}{2}
 \]

7. Considering \(\frac{k_B T}{\hbar} = 1 \), where \(T \) is the temperature, for \(\Delta = 0 \), the shift in the transition temperature \(T_c - T \) is

 No, the answer is incorrect.
 Accepted Answers:
 \[
 0.01
 0.05
 0.1
 0.2
 \]

8. Consider a gas of \(N \) spinless fermions in a d-dimensional box of volume \(V \), with a dispersion relation

 \[
 \epsilon = \sqrt{p^2 + m^2}
 \]

 where \(p \) and \(m \) are both arbitrary positive constants.

 a) The condition for \(n \) and \(m \) for Bose-Einstein condensation is

 No, the answer is incorrect.
 Accepted Answers:
 \[
 d > 1
 \]

b) The equation of state for this gas below the critical temperature \(T_c \) is

 No, the answer is incorrect.
 Accepted Answers:
 \[
 P = \frac{1}{2} \epsilon T_c / \xi(1)
 \]

The single-particle energy of an ideal boson gas has an energy gap \(\Delta > 0 \):

\[
\epsilon(x) = \left\{ \begin{array}{ll}
-\Delta & (x = 0), \\
\frac{1}{2} \epsilon(x) & (x > 0)
\end{array} \right.
\]

\[
\epsilon(x) = \left\{ \begin{array}{ll}
\frac{1}{2} \epsilon(x) & (x = 0), \\
\frac{1}{2} \epsilon(x) & (x > 0)
\end{array} \right.
\]

9. The degeneracy \(j \) where the Bose-Einstein condensation takes place is

 No, the answer is incorrect.
 Accepted Answers:
 \[
 j = \frac{1}{2}
 \]

10. The temperature \(T \) of a blackbody is

 No, the answer is incorrect.
 Accepted Answers:
 \[
 100 \text{ K}
 \]

11. Consider a gas of \(N \) spinless fermions in a d-dimensional box of volume \(V \), with a dispersion relation

 \[
 \epsilon = \sqrt{p^2 + m^2}
 \]

 where \(p \) and \(m \) are both arbitrary positive constants.

 a) The condition for \(n \) and \(m \) for Bose-Einstein condensation is

 No, the answer is incorrect.
 Accepted Answers:
 \[
 d > 1
 \]

b) The equation of state for this gas below the critical temperature \(T_c \) is

 No, the answer is incorrect.
 Accepted Answers:
 \[
 P = \frac{1}{2} \epsilon T_c / \xi(1)
 \]