Assignment 4

The date due for submitting this assignment has passed.

As per our records you have not submitted this assignment.

Due on 2021-03-17, 22:59:07.

1. Radius of the electron orbitals in se^{-2} under the action of a perpendicular magnetic field B is [1 point]
 - Proportional to B
 - Inversely proportional to B
 - Proportional to B^2
 - Independent of B

2. Are all electrons in a real-space under the action of a perpendicular magnetic field B [1 point]
 - Inversely proportional to B;
 - Enclose one magnetic flux quantum (0);
 - Inversely proportional to B;
 - All of these

3. The product of the areas of electron orbitals in se^{-2} and real-space for the 4th Landau level in a perpendicular magnetic field B [1 point]
 - Proportional to B
 - Independent of B
 - Proportional to B^2
 - Inversely proportional to B

4. Number of states in the Landau level with $m = 0$ [1 point]
 - In general it is the number of magnetic flux quanta enclosed by B,
 - Half of the number of magnetic flux quanta enclosed by B.
 - Independent of the field and depending on the details of the material system.
 - Proportional to the area S.

5. Number of fully occupied Landau level to a system with an electron density of 10^{19} cm$^{-2}$ [1 point]
 - α
 - β
 - γ
 - δ

6. Observation of the longitudinal resistance flow for a 2D system in the quantum Hall regime [1 point]
 - Proportional to B
 - Proportional to B^2
 - Proportional to B^3
 - Independent of B

7. Resistance plateaus in the quantum Hall effect occur when [1 point]
 - The Landau levels cross the Fermi level.
 - The Fermi level is between two adjacent Landau levels.
 - The Fermi level is at the bottom of the Landau band.
 - The Fermi level is at the top of the Landau band.

8. The longitudinal resistance exhibits a dip [1 point]
 - When the Fermi level lies between two adjacent Landau levels.
 - Whenever the longitudinal resistance exhibits a dip.
 - When the longitudinal resistance exhibits a dip.
 - Independent of the Fermi level.

9. Write on a Quantum Hall resistance plateaus the block of the sample [1 point]
 - Including Boring
 - Conducitivity
 - Superconductivity
 - Insulating

10. Quantum Hall effect can be explained by [1 point]
 - One-dimensional transport formula
 - Two-dimensional transport formula
 - Single particle quantum mechanical picture
 - Pauli's exclusion principle

11. Why do the edge channels in a quantum Hall system exhibit zero resistance? [1 point]
 - Three-dimensional symmetry broken
 - Edge state channel splitting is negligible not allowed
 - Fermi surface intersects 2D subbands
 - All of these

12. Two probe resistances of a quantum Hall system is [1 point]
 - Identically, longitudinal resistance R_{xx}
 - Identical, transverse resistance R_{xy}
 - Identical, magnetic field B
 - Independent of the magnetic field B

13. How does the transverse resistance R_{xy} [1 point]
 - Identical, longitudinal resistance R_{xx}
 - Identical, magnetic field B
 - Identical, transverse resistance R_{xy}
 - Independent of the magnetic field B