Assignment 5

The due date for submitting this assignment is 2023-04-01, 23:59 IST.

1. For the Runge-Kutta 2nd order method, the local and global errors are respectively of the order of

 \[\mathcal{O}(h) \quad \text{and} \quad \mathcal{O}(h^2) \]

 \[\text{No, the answer is incorrect.} \]

2. For the Runge-Kutta 4th order method, the local and global errors are respectively of the order of

 \[\mathcal{O}(h^4) \quad \text{and} \quad \mathcal{O}(h^5) \]

 \[\text{No, the answer is incorrect.} \]

3. Global Mean Error function defined in order normal

 \[x(t) = e^t + e^{-t} \]

 calculates absolute deviation of the computed estimates from the true value of the solution function at \(t = 1 \)

 \[x(1) = e + e^{-1} \]

 \[y(t) \text{ is the exact solution of the differential equation} \]

 \[y(t) = \frac{e^t}{2} - \frac{1}{2} \]

 \[\text{No, the answer is incorrect.} \]

4. Which of the plots below correspond to the solution of the initial value problem

 \[x(t) = e^t + e^{-t} \]

 \[y(t) = \frac{e^t}{2} - \frac{1}{2} \]

 \[\text{A} \quad \text{B} \]

 \[\text{C} \quad \text{D} \]

 \[\text{A, B, C} \quad \text{D} \]

 \[\text{No, the answer is incorrect.} \]

5. Consider solving the initial value problem

 \[x(t) = e^t + e^{-t} \]

 \[x(0) = 0 \]

 using the Improved Euler's 2nd order Runge-Kutta method with step size \(h = 0.4 \). At \(t = 3 \), the value of \(x(t) \) is

 \[0.108639 \]

 \[0.167024 \]

 \[0.230932 \]

 \[0.299379 \]

 \[\text{No, the answer is incorrect.} \]

6. Consider solving the initial value problem

 \[x(t) = e^t + e^{-t} \]

 \[x(0) = 0 \]

 using the 4th order Runge-Kutta method with step size \(h = 0.1 \). At \(t = 0.5 \), the value of \(y(t) \) is

 \[-0.681515 \]

 \[-0.807675 \]

 \[-0.827145 \]

 \[-0.842682 \]

 \[\text{No, the answer is incorrect.} \]

7. Consider solving the initial value problem

 \[x(t) = \sin(t) \quad x(0) = 1 \]

 \[y(t) = t^2 \]

 using the 5th order Runge-Kutta method with step size \(h = 0.01 \). The Global Mean error is defined by

 \[\text{Global Mean error} = \frac{1}{n} \sum_{i=1}^{n} |y_i - F(t_i)| \]

 Where \(n \) is the number of time steps in the computation, for this computation, \(n = 100 \)

 \[y(0) = 0 \]

 \[y(1) = 1 \]

 \[y(2) = 4 \]

 \[\text{No, the answer is incorrect.} \]

Course outline

Unit 6 - Week 5

1. Nodal A
2. Nodal B
3. Nodal C
4. Nodal D
5. Nodal E
6. Nodal F
7. Nodal G
8. Nodal H
9. Nodal I
10. Nodal J
11. Nodal K
12. Nodal L
13. Nodal M
14. Nodal N
15. Nodal O
16. Nodal P
17. Nodal Q
18. Nodal R
19. Nodal S
20. Nodal T
21. Nodal U
22. Nodal V
23. Nodal W
24. Nodal X
25. Nodal Y
26. Nodal Z

Assignment 5

- Due date: 2023-04-01, 23:59 IST.
- Local and global errors for the Runge-Kutta 2nd order method:
 - Local error: \(\mathcal{O}(h) \)
 - Global error: \(\mathcal{O}(h^2) \)
- Local and global errors for the Runge-Kutta 4th order method:
 - Local error: \(\mathcal{O}(h^4) \)
 - Global error: \(\mathcal{O}(h^5) \)
- Global Mean Error function:
 - \(x(t) = e^t + e^{-t} \)
 - \(y(t) = \frac{e^t}{2} - \frac{1}{2} \)
- Improved Euler's 2nd order Runge-Kutta method with step size \(h = 0.4 \), at \(t = 3 \):
 - Value of \(x(t) \) is \(0.108639 \) (No, incorrect)
 - Value of \(x(t) \) is \(0.167024 \) (No, incorrect)
 - Value of \(x(t) \) is \(0.230932 \) (No, incorrect)
 - Value of \(x(t) \) is \(0.299379 \) (No, incorrect)
- 4th order Runge-Kutta method with step size \(h = 0.1 \), at \(t = 0.5 \):
 - Value of \(y(t) \) is \(-0.681515 \) (No, incorrect)
 - Value of \(y(t) \) is \(-0.807675 \) (No, incorrect)
 - Value of \(y(t) \) is \(-0.827145 \) (No, incorrect)
 - Value of \(y(t) \) is \(-0.842682 \) (No, incorrect)
- 5th order Runge-Kutta method with step size \(h = 0.01 \), at \(t = 1 \):
 - Global Mean error is defined by:
 \[\text{Global Mean error} = \frac{1}{n} \sum_{i=1}^{n} |y_i - F(t_i)| \]
 - Number of time steps \(n = 100 \)
 - \(y(0) = 0 \)
 - \(y(1) = 1 \)
 - \(y(2) = 4 \)
 - \(\text{No, incorrect.} \)