Assignment 9

The due date for submitting this assignment has passed.
As per our records you have not submitted this assignment.

1) For a 1D quantum mechanical simple harmonic oscillator the potential is:
 - symmetric
 - anti-symmetric
 - has inversion symmetry

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 symmetric
 has inversion symmetry

2) In the bracketing/bisection method that is used to determine the eigenvalues, with every iteration, the difference between the maxima (E_{max}) and minsima (E_{min}) of energy
 - increases
 - decreases
 - remains same

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 decreases

3) Which of the following properties should a wavefunction satisfy?
 - The wavefunction and its first derivative should be continuous
 - The wavefunction should have discontinuity
 - Only the first derivative of the wave function should be continuous
 - None of the above

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 The wavefunction and its first derivative should be continuous

Using the Numerov algorithm solve the one dimensional problem for a potential given by $V = bx^4 + cx^2$, where $b = 1$ and $c = 6$ and answer the following questions:

4) How many minima does the above potential have?
 - Zero
 - One
 - Two
 - Three

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 Two

5) The ground state energy, correct up to two places after decimal is given by

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 -6.64
 -6.75
 6.64
 6.75

6) Which of the following statements are true about the probability density of a particle in its ground state in the above mentioned potential:
 - A minima at $x = 0$
 - Is symmetric
 - Is same for all values of x and is zero
 - Is same for all values of x and has a non-zero value

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 A minima at $x = 0$
 Is symmetric