Assignment 3

Due on 2023-08-19, 09:00 AM

1. Calculate x and y in the equation $2x + 3y = 12$. Which is given in terms of these unknown variables (x, y)? of the Hamiltonian H and unit $e^{i	heta}$. The expectation value is $\langle x \rangle = 3$.

 - $x = 3$
 - $y = 4$
 - $x = 6$
 - $y = 0$
 - None of these

2. Which of the following Fermi surfaces are not allowed to exist? (Unit 6)

 - $k = \frac{\pi}{2}$
 - $k = \frac{\pi}{4}
 - None of the above

3. The functional form of the equation of motion of relativistic electrons is given by the following equation:

 $$m \frac{d^2 \textbf{r}}{dt^2} + q \textbf{E}(\textbf{r}, t) = m \textbf{v}$$

 - True
 - False

4. Entangling with previous problem 3 in the context of spin state, the density matrix for this system ρ:

 - $\rho_{xx} = \frac{1}{2}$
 - $\rho_{yy} = \frac{1}{2}$
 - $\rho_{xy} = 0$
 - $\rho_{yx} = 0$
 - None of these

5. If the density matrix is given by the equation $\rho = \frac{1}{2} (I + \sigma_x)$, where I is the identity matrix and σ_x is the Pauli spin matrix.

 - True
 - False

6. If the density matrix is given by the equation $\rho = \frac{1}{2} (I + \sigma_x)$, where I is the identity matrix and σ_x is the Pauli spin matrix.

 - True
 - False

7. Find the density matrix ρ for a spin-1/2 system in the state $|\uparrow\rangle$.

 - $\rho = \frac{1}{2} (I + \sigma_z)$
 - $\rho = \frac{1}{2} (I - \sigma_z)$
 - None of these

8. Calculate two different states with zero energy, $\epsilon = 0$ and hopping rate $\lambda = 1$. The change in bond energy changes the hopping rate λ.

 - True
 - False

9. The Hamiltonian is given by $H = \hbar \omega \sigma_z + \lambda (\sigma_x \otimes \sigma_x)$

 - True
 - False

10. Calculate the expectation value $\langle 0 | \sigma_z | 0 \rangle$ in the ground state $|0\rangle$ of the system.

 - 1
 - -1
 - 0

11. Which of the following represents the SEF for free electrons in one dimension subject to a magnetic field B 1. $\langle A \mid B \rangle$ 2. $\langle A \mid 0 \rangle$ 3. $\langle 0 \mid B \rangle$

 - True
 - False

12. The function of state representation shows the SEF for free electrons in one-dimensional solid subject to a magnetic field B.

 - $\langle A \mid B \rangle$
 - $\langle A \mid 0 \rangle$
 - $\langle 0 \mid B \rangle$

 - True
 - False