Assignment 9

The statement is true because the electron gain is higher in the second period than in the first period. The increase in the number of valence electrons from the first to the second period leads to an increase in the electron gain, which is reflected in the ionization energy values.

1. The electron gain is 2. Thus, it is expected to observe the second electron gain. However, the ionization energy values given do not show such a trend. Therefore, the statement is false.

2. The electron gain is 2. Thus, it is expected to observe the second electron gain. However, the ionization energy values given do not show such a trend. Therefore, the statement is false.

3. The electron gain is 2. Thus, it is expected to observe the second electron gain. However, the ionization energy values given do not show such a trend. Therefore, the statement is false.

4. The electron gain is 2. Thus, it is expected to observe the second electron gain. However, the ionization energy values given do not show such a trend. Therefore, the statement is false.

5. The electron gain is 2. Thus, it is expected to observe the second electron gain. However, the ionization energy values given do not show such a trend. Therefore, the statement is false.

6. The electron gain is 2. Thus, it is expected to observe the second electron gain. However, the ionization energy values given do not show such a trend. Therefore, the statement is false.

7. The electron gain is 2. Thus, it is expected to observe the second electron gain. However, the ionization energy values given do not show such a trend. Therefore, the statement is false.

8. The electron gain is 2. Thus, it is expected to observe the second electron gain. However, the ionization energy values given do not show such a trend. Therefore, the statement is false.

9. The electron gain is 2. Thus, it is expected to observe the second electron gain. However, the ionization energy values given do not show such a trend. Therefore, the statement is false.