Week 6 Assignment 6

The due date for submitting this assignment has passed.

As per our records you have not submitted this assignment.

1)

For type-1 second harmonic generation and for an incident beam of 100 \(\text{W/cm}^2 \) at \(\lambda = 1.06 \ \mu m \). Calculate the second harmonic conversion efficiency perfectly phase matched 2.5 cm long KDP crystal. (For KDP crystal 1.5, \(d_{\text{eff}} = 0.28 \times 10^{-12} \text{m/V} \)).

(a) 1.7%
(b) 7%
(c) 17%
(d) 34%

No, the answer is incorrect.
Score: 0
Accepted Answers:
(c)

2)

Consider a crystal where Second Harmonic Generation (SHG) is achieved with fundamental wave at \(\lambda = 1.55 \ \mu m \) for an incident beam of 100 \(\text{MW/cm}^2 \). refractive indices of the crystal at \(\lambda = 1.55 \ \mu m \) and \(\lambda = 0.775 \ \mu m \) are given \(n = 1.56891 \) and \(n = 1.59892 \) respectively. The \(I_{\text{SHG}}/I_{\text{fundamental}} \) for 2.5 cm crystal is approximately. (For the crystal \(d_{\text{eff}} = 0.28 \times 10^{-12} \text{m/V} \)).

(a) \(10^{-3} \)
(b) \(10^{-6} \)
(c) \(10^{-9} \)
(d) \(10^{-12} \)

No, the answer is incorrect.
Score: 0
Accepted Answers:
(c)
Consider a crystal where 2nd order Quasi Phase Matching (QPM) is achieved via Second Harmonic Generation (SHG) with the fundamental wave at $\lambda = 1.55 \, \mu m$. Refractive indices of the crystal at $\lambda = 1.55 \, \mu m$ and $\lambda = 0.775 \, \mu m$ are given as $n = 1.56891$ and $n = 1.59892$ respectively. The period of nonlinearity (Λ) is

(a) 52μm
(b) 26μm
(c) 78μm
(d) 100μm

No, the answer is incorrect.
Score: 0
Accepted Answers:
(a)

4) Consider a crystal where 1st order Quasi Phase Matching (QPM) is achieved via Second Harmonic Generation (SHG) with the fundamental wave at $\lambda = 1.06 \, \mu m$. Refractive indices of the crystal at $\lambda = 1.06 \, \mu m$ and $\lambda = 0.53 \, \mu m$ are given as n and $n = 1.52$ respectively. The period of nonlinearity (Λ) is

(a) 53μm
(b) 26.5 μm
(c) 13.25μm
(d) 75μm

No, the answer is incorrect.
Score: 0
Accepted Answers:
(b)

5) The third order QPM periodicity for a second harmonic ($e \rightarrow e + e$) process in lithium tantalite with \vec{k} along the x-axis is (the fundamental wavelength is 1.064,$n(\omega) = 2.145$; $n(2\omega) = 2.215$)

(a) 11.4μm
(b) 7.6 μm
(c) 22.8μm
(d) 34.2μm

No, the answer is incorrect.
Score: 0
Accepted Answers:
(c)

6) The first order QPM periodicity for a sum frequency ($\omega_2 + \omega_3 \rightarrow \omega_3$) gener process ($e + e \rightarrow e$) process in lithium niobate with \vec{k} along the x-axis is ($n(\omega) = 2.233$; $n(\omega_2) = 2.211; n(\omega_3) = 2.287$). Given $\lambda_2 = 1.064 \, \mu m, \lambda_3 = 1.550 \, \mu m$.

(a) 10μm
(b) 20 μm
(c) 5μm
(d) 15 μm
7) d_{eff} for a first order QPM interaction is maximized for a structure that has a cycle.

(a) 25% (b) 30% (c) 50% (d) 70%

No, the answer is incorrect.
Score: 0
Accepted Answers: (c)

8) d_{eff} for a third order QPM interaction is maximized for the value of D.

(a) 1/3 (b) 1/4 (c) 1/5 (d) 1/6

No, the answer is incorrect.
Score: 0
Accepted Answers: (c)

9) Under 180° rotation about x-axis the first order susceptibility $\chi^{(1)}_{ii}$ transform:

(a) $\chi^{(1)}_{ii} = -\chi^{(1)}_{ii}$ (b) $\chi^{(1)}_{ii} = \chi^{(1)}_{ii}$ (c) $\chi^{(1)}_{ii} = 0$ (d) none of these

No, the answer is incorrect.
Score: 0
Accepted Answers: (b)

10) In Centro symmetric medium which order of susceptibility is non-zero.

(a) $\chi^{(2)}$ (b) $\chi^{(5)}$ (c) $\chi^{(8)}$ (d) $\chi^{(10)}$

No, the answer is incorrect.
Score: 0
Accepted Answers: (b)
No, the answer is incorrect.
Score: 0
Accepted Answers:
(b)