Assignment 7

1. Let \(A \) be a square matrix of size \(n \times n \). Define \(B = (I_n + A)^{-1} \), where \(I_n \) is the identity matrix. Consider the function \(f(A) = (I + A)^{-1} \).

2. Find the matrix \(B \) such that \((I_n + B)^{-1} = B \).

3. Consider the system of linear equations \(Ax = b \). Suppose \(A \) is a nonsingular matrix of size \(m \times n \). Let \(x \) be the solution to this system. Show that \(A^{-1}x = b \).

4. Let \(A \) be a square matrix of size \(n \times n \) and \(b \) be a column vector of size \(n \times 1 \). Consider the system of linear equations \(Ax = b \). Show that if \(A \) has a unique solution, then there exists a matrix \(C \) such that \(A = CB \).

5. Let \(A \) be a square matrix of size \(n \times n \) and \(b \) be a column vector of size \(n \times 1 \). Consider the system of linear equations \(Ax = b \). Show that if \(A \) has a unique solution, then there exists a matrix \(C \) such that \(A = CB \).

6. Let \(A \) be a square matrix of size \(n \times n \) and \(b \) be a column vector of size \(n \times 1 \). Consider the system of linear equations \(Ax = b \). Show that if \(A \) has a unique solution, then there exists a matrix \(C \) such that \(A = CB \).

7. Let \(A \) be a square matrix of size \(n \times n \) and \(b \) be a column vector of size \(n \times 1 \). Consider the system of linear equations \(Ax = b \). Show that if \(A \) has a unique solution, then there exists a matrix \(C \) such that \(A = CB \).

8. Let \(A \) be a square matrix of size \(n \times n \) and \(b \) be a column vector of size \(n \times 1 \). Consider the system of linear equations \(Ax = b \). Show that if \(A \) has a unique solution, then there exists a matrix \(C \) such that \(A = CB \).

9. Let \(A \) be a square matrix of size \(n \times n \) and \(b \) be a column vector of size \(n \times 1 \). Consider the system of linear equations \(Ax = b \). Show that if \(A \) has a unique solution, then there exists a matrix \(C \) such that \(A = CB \).

10. Let \(A \) be a square matrix of size \(n \times n \) and \(b \) be a column vector of size \(n \times 1 \). Consider the system of linear equations \(Ax = b \). Show that if \(A \) has a unique solution, then there exists a matrix \(C \) such that \(A = CB \).