1. Moment of inertia of a uniform square plate of length $x = y = a$ and mass M about x and y axes are
 (a) $I_{xx} = \frac{1}{12}Ma^2$ and $I_{yy} = \frac{1}{12}Ma^2$
 (b) $I_{xx} = \frac{1}{3}Ma^2$ and $I_{yy} = \frac{2}{3}Ma^2$
 (c) $I_{xx} = \frac{1}{3}Ma^2$ and $I_{yy} = \frac{2}{3}Ma^2$
 (d) $I_{xx} = \frac{2}{3}Ma^2$ and $I_{yy} = \frac{1}{3}Ma^2$

2. Moment of inertia of a uniform square plate of length $x = y = a$ and mass M about z axis is
 (a) $I_{zz} = \frac{1}{3}Ma^2$
 (b) $I_{zz} = \frac{2}{3}Ma^2$
 (c) $I_{zz} = Ma^2$
 (d) $I_{zz} = \frac{2}{3}Ma^2$

3. Product of inertia of a uniform square plate of length $x = y = a$ and mass M are
 (a) $I_{xy} = I_{yx} = 0$, $I_{xz} = I_{zx} = 0$ and $I_{yz} = I_{zy} = 0$
 (b) $I_{xy} = I_{yx} = -\frac{1}{12}Ma^2$, $I_{xz} = I_{zx} = 0$ and $I_{yz} = I_{zy} = 0$
 (c) $I_{xy} = I_{yx} = 0$, $I_{xz} = I_{zx} = -\frac{1}{3}Ma^2$ and $I_{yz} = I_{zy} = -\frac{1}{3}Ma^2$
 (d) $I_{xy} = I_{yx} = 0$, $I_{xz} = I_{zx} = -\frac{1}{12}Ma^2$ and $I_{yz} = I_{zy} = 0$

4. Principal moment of inertia of a uniform square plate of length $x = y = a$ and mass M are
 (a) $I_1 = 0$, $I_2 = 0$ and $I_3 = 0$
 (b) $I_1 = \frac{1}{12}Ma^2$, $I_2 = 0$ and $I_3 = \frac{7}{12}Ma^2$
 (c) $I_1 = \frac{1}{12}Ma^2$, $I_2 = \frac{7}{12}Ma^2$ and $I_3 = 0$
 (d) $I_1 = \frac{1}{12}Ma^2$, $I_2 = \frac{7}{12}Ma^2$ and $I_3 = \frac{2}{3}Ma^2$

5. Moment of inertia of a solid circular plate of radius a, height h and mass M about an axis on the surface of the cylinder and parallel to the axis of the cylinder
 (a) Ma^2
 (b) $\frac{2}{3}Ma^2$
 (c) $\frac{3}{2}Ma^2$
 (d) $\frac{1}{2}Ma^2$

6. Radius of gyration of a rectangular plate with sides a and b about an axis perpendicular to the plate and passing through a vertex is
 (a) $\frac{1}{2}Ma^2 + b^2$
 (b) $\sqrt{\frac{1}{3}(a^2 + b^2)}$
 (c) $\sqrt{\frac{1}{3}M(a^2 + b^2)}$
(d) \(\frac{1}{3}(a^2 + b^2) \)

7. Calculate the radius of gyration of a spherical shell of mass \(M \) and radius \(R \) with origin (fixed point) at its center
(a) \(\sqrt{\frac{3}{8}} R \)
(b) \(\sqrt{\frac{2}{3}} R \)
(c) \(\sqrt{\frac{3}{4}} R \)
(d) \(\sqrt{\frac{2}{5}} R \)

8. A solid cylinder of radius \(a \) and mass \(M \) rolls without slipping down an inclined plane of angle \(\theta \). The acceleration is
(a) \(g \sin \theta \)
(b) \(\frac{3}{4} g \sin \theta \)
(c) \(\frac{1}{3} \sin \theta \)
(d) \(\frac{2}{3} g \sin \theta \)

9. Equation for the ellipsoid of inertia corresponding to a square plate of length \(x = y = a \) is
(a) \(\rho_x^2 + \rho_y^2 + 2\rho_z^2 - \frac{3}{2} \rho_x \rho_y = \frac{3}{M a^2} \)
(b) \(\rho_x^2 + \rho_y^2 + 2\rho_z^2 + \frac{3}{2} \rho_x \rho_y = \frac{3}{M a^2} \)
(c) \(\rho_x^2 - \rho_y^2 - 2\rho_z^2 - \frac{3}{2} \rho_x \rho_y = \frac{3}{M a^2} \)
(d) \(\rho_x^2 + \rho_y^2 + 2\rho_z^2 + \frac{3}{2} \rho_x \rho_y = \frac{3}{M a^2} \)

10. If a rigid body with one point fixed rotates with angular velocity \(\mathbf{\Omega} \) and has angular momentum \(\mathbf{\Omega} \), then kinetic energy can be written as
(a) \(\frac{1}{2}(I_{xx} \omega_x^2 + I_{yy} \omega_y^2 + I_{zz} \omega_z^2) \)
(b) \(2I_{xy} \omega_x \omega_y + 2I_{xz} \omega_x \omega_z + 2I_{yz} \omega_y \omega_z \)
(c) \(\frac{1}{2}(I_{xx} \omega_x^2 + I_{yy} \omega_y^2 + I_{zz} \omega_z^2 - 2I_{xy} \omega_x \omega_y - 2I_{xz} \omega_x \omega_z - 2I_{yz} \omega_y \omega_z) \)
(d) \(\frac{1}{2}(I_{xx} \omega_x^2 + I_{yy} \omega_y^2 + I_{zz} \omega_z^2 + 2I_{xy} \omega_x \omega_y + 2I_{xz} \omega_x \omega_z + 2I_{yz} \omega_y \omega_z) \)

End