Assignment 6

The due date for submitting this assignment has passed.

Due on 2023-01-03, 23:59 IST.

As per our recent you have not submitted this assignment.

There may be more than one correct answer.

1. For a supernova explosion with known energy (E) and ambient density (ρA), the blast wave surface area increases as
 \[A \propto \left(\frac{E}{\rho_A} \right)^{1/3} \]
 - 1 point

2. The velocity of shock front in case of supernova expansion
 - decreases with time
 - increases with time
 - initially increases then decreases
 - ultimately decreases then increases
 - 1 point

3. Do you believe the answer to increment?
 - Yes
 - 1 point
 Accepted Answer:

4. What happens when a supernova shock enters a de-Laval nozzle?
 - It becomes a subsonic flow at the exit
 - It remains supersonic
 - Depends on the chemical composition of the fluid
 - 1 point
 Accepted Answer: It may become a subsonic flow at the exit

5. The ratio of \(\eta_1 / \eta_2\) will be
 - 2/3
 - 1/4
 - 3/2
 - 2/3
 - 0.5
 - 1 point
 Accepted Answer: customary notation in the radio frequency range and spectral index in the optical range

6. A fluid in hydrostatic equilibrium under gravity is invisible against collision if
 - it requires a greater magnitude than the vertical pressure gradient
 - it requires a greater magnitude than the vertical temperature gradient
 - the Bond number is small
 - the adiabatic index is less than 2
 - 1 point
 Accepted Answer: it requires a greater magnitude than the vertical pressure gradient

7. The ratio of total waves depends on
 - the total energy of the explosion only
 - the total energy of the explosion and the ambient density only
 - the total energy of the explosion and blast waves density only
 - the total energy of the explosion, the ambient density and time
 - 1 point
 Accepted Answer: the total energy of the explosion, the ambient density and time

8. The total energy of the explosion, the ambient density and time
 - 1 point

9. By linear theory, we can analyze
 - the linear wave model in a fluid
 - the linear model in a fluid
 - turbulence
 - all of the above
 - 1 point
 Accepted Answer: all of the above

10. Rankine-Hugoniot conditions are valid
 - in the rest frame of the shock
 - in the frame where the shock is moving
 - only when shock waves are absent
 - 1 point
 Accepted Answer: in the rest frame of the shock