Assignment 10

Due on 2018-10-08, 23:59 IST

1. Transformation matrix is given by:
 \[
 \begin{bmatrix}
 x' \\
 y' \\
 z'
 \end{bmatrix} = \begin{bmatrix}
 a & b & c \\
 d & e & f \\
 g & h & i
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y \\
 z
 \end{bmatrix}

 \text{Answer:} x' = ax + by + cz, y' = dx + ey + fz, z' = gx + hy + iz.

2. For a large number of particles, pseudoscalar correlations, \(A \), is zero.
 \text{Answer:} Yes, Pseudoscalar correlations are zero.

3. The velocity fluctuation is in Fourier space is given by \(\tilde{u} \). \(\tilde{u} \) is not zero.
 \text{Answer:} No, \tilde{u} \text{ is not zero.}

4. In a periodic box, \(\tilde{u} \), consider the following frequency with a scalar of \(\tilde{u} = a \).

 \begin{align*}
 \tilde{u} &= \text{constant} \\
 \text{Answer:} \tilde{u} &= \text{constant}
 \end{align*}

5. For the flow described in S1, the total scalar energy for the flow is:
 \[E_{\text{total scalar energy}} = \int E_{\text{scalar}} \text{d}V
 \text{Answer:} \int E_{\text{scalar}} \text{d}V
 \]

6. For the flow described in S2, the total scalar energy transferred by the model:
 \[E_{\text{transferred by the model}} = \int E_{\text{transferred}} \text{d}V
 \text{Answer:} \int E_{\text{transferred}} \text{d}V
 \]

7. Consider a scalar, \(\phi = a \). The velocity fluctuation moves from one dimensional to two dimensional. \(\phi \) by the relation is:
 \[\phi_{\text{new}} = \phi_{\text{old}} + \phi_{\text{fluctuation}}
 \text{Answer:} \phi_{\text{new}} = \phi_{\text{old}} + \phi_{\text{fluctuation}}
 \]

8. A plot of frequency spectrum is shown. Note: Note: No, it is not.
 \[f_{\text{spectrum}} = \text{constant}
 \text{Answer:} f_{\text{spectrum}} = \text{constant}
 \]

9. The velocity fluctuation is in two-dimensional flow.
 \[\text{Answer:} \text{No, it is not.}
 \]

10. Choose the correct statement to describe scalar turbulence.
 \[\text{Answer:} \text{Yes, correct statement.}
 \]