Assignment 2

The due date for submitting this assignment has passed. As per our policy, you have not submitted this assignment.

1. For an incompressible flow, \(\nabla \cdot \mathbf{V} = 0 \). The constant is given by

\[\nabla \cdot \mathbf{V} = 0 \]

\[\mathbf{V} = (x, y, z) \]

\[\nabla \cdot \mathbf{V} = \frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial z}{\partial z} = 3

\text{None of the above.}

2. Velocity field corresponding to the velocity inside \((-1, 1) \) is \(\mathbf{V} = (x, y, z) \).

\[\mathbf{V} = (x, y, z) \]

\[(x, y, z) \]

\[\text{None of the above.} \]

3. Temperature equation for incompressible fluid flow is \(\frac{\partial T}{\partial t} + \mathbf{V} \cdot \nabla T = \nabla \cdot (k \nabla T) \). The correct equation in Fourier space would be

\[\frac{\partial T}{\partial t} + \mathbf{V} \cdot \nabla T = \nabla \cdot (k \nabla T) \]

\[\text{None of the above.} \]

4. What one of the following quantities can also be negative?

\[\text{Density} \]

\[\text{Pressure} \]

\[\text{Entropy} \]

\[\text{None of the above.} \]

5. All the active Fourier modes in the velocity field \(\mathbf{V}(x, y) = x \cos^2(x) + y \sin^2(x) \).

\[\mathbf{V}(x, y) = x \cos^2(x) + y \sin^2(x) \]

\[\text{None of the above.} \]

6. Velocity field corresponding to the velocity inside \((-1, 1) \) is \(\mathbf{V} = (x, y, z) \).

\[\mathbf{V} = (x, y, z) \]

\[(x, y, z) \]

\[\text{None of the above.} \]

7. The Huygens-Fresnel principle for wave propagation is given by

\[\text{Huygens-Fresnel principle} \]

\[\text{Fourier optics} \]

\[\text{None of the above.} \]

8. How many terms are needed for the velocity field

\[\mathbf{V}(x, y) = x \cos^2(x) + y \sin^2(x) \]

\[\text{None of the above.} \]

\[\text{None of the above.} \]

9. Evolution equation of \(A \) and \(B \) for the velocity field \(\mathbf{V} = (x, y, z) \)

\[\mathbf{V} = (x, y, z) \]

\[\text{None of the above.} \]

\[\text{None of the above.} \]

10. Velocity field constructed using the Fourier modes \(\mathbf{A} = (0, 0, 0) \), \(\mathbf{B} = (1, 0, 1) \), \(\mathbf{C} = (0, 1, 0) \), \(\mathbf{D} = (0, 0, 0) \)

\[\text{None of the above.} \]

\[\text{None of the above.} \]

\[\text{None of the above.} \]

\[\text{None of the above.} \]