Assignment 6

The due date for submitting this assignment has passed. **Due on 2016-08-30, 23:59 IST.**

Submitted assignment

1) A projectile of mass 10 kg is fired with a speed of \(v_0 = 10 \text{ m/s} \) at an angle of \(\theta_0 = 30^\circ \) from the horizontal. The height that it attains during its flight and the range \(R \) (if there is no drag) are given by

- Height=1.25m and Range=5m
- Height=1.25m and Range=5\(\sqrt{3} \)m
- Height=1.25m and Range=15m
- Height=1.25m and Range=\(\sqrt{3} \)m

No, the answer is incorrect.

Score: 0

Accepted Answers:

Height=1.25m and Range=5\(\sqrt{3} \)m

2) A particle is moving in a viscous medium under the influence of a constant force. If it started from the rest at \(t = 0 \), its speed \(v(t) \) as a function of time \(t \) is properly represented by

![Graph showing speed as a function of time](image-url)
3) A particle is observed after it has been moving for a long time under the influence of the constant force in a medium that applies a drag force proportional to the square of its velocity. Distance versus time graph made by the observer will look like.
No, the answer is incorrect.
Score: 0

Accepted Answers:

4) A particle of mass 0.1 kg is moving with a speed of \(2 \, m/s \) along \(x \) - axis. Another particle of mass 0.2 kg is moving along \(y \) - axis with the same speed. If two particles are treated as part of one system and both particles pushed in the direction of their motion by a force of 1 N. Acceleration of their CM given as:

\[
\frac{1}{3} (\hat{i} + \hat{j}) \, ms^{-1}
\]

\[
\frac{10}{3} (\hat{i} + \hat{j}) \, ms^{-1}
\]

\[
\frac{10}{3} (\hat{i} - \hat{j}) \, ms^{-1}
\]

\[
\frac{10}{3} (-\hat{i} + \hat{j}) \, ms^{-1}
\]

No, the answer is incorrect.
Score: 0

Accepted Answers:

\[
\frac{10}{3} (\hat{i} + \hat{j}) \, ms^{-1}
\]

5) Position of CM of one half of a solid cylinder ,having radius \(R \) and length \(L \) is:

\[
\frac{4R}{3\pi} \, \text{above the flat surface}
\]

\[
0
\]

\[
\frac{2R}{3L} \, \text{above the flat surface}
\]
6) The mass of an hourglass with sand in it is m. It is kept on a weighing scale. During the time 1 point when the flow of the sand from its upper portion to the lower one is steady. The reading on the weighing will be

- mg
- greater than mg
- lower than mg
- Can not say anything.

No, the answer is incorrect.
Score: 0
Accepted Answers:

- above the flat surface

4) $\frac{4R}{3\pi}$ below the flat surface

No, the answer is incorrect.
Score: 0
Accepted Answers:

5) $\frac{4R}{3\pi}$ above the flat surface

7) A rocket is launched in a uniform gravitational field. It accelerates by ejecting exhaust at 1 point constant relative speed of u. Assume that the rate at which the burnt fuel is exhausted is γm, where m is the instantaneous mass of the rocket and γ is a constant. In addition to gravity, the rocket also experiences a retarding force of mb, where b is a constant. Find the speed $\nu(t)$ of the rocket as a function of time.

\[\nu(t) = \frac{ru+\gamma}{b} \left(1 - e^{-bt} \right) \]

No, the answer is incorrect.
Score: 0
Accepted Answers:

\[\nu(t) = \frac{ru+\gamma}{b} \left(1 + e^{-bt} \right) \]

8) A 3 kg bomb falling vertically down splits into two pieces of masses 1 kg and 2 kg. The 1 kg 1 point piece flies off in the vertically upward direction. a_1 is the accelerations of the 1 kg mass, a_3 is the acceleration for the 3 kg mass and a_{CM} is the acceleration for their centre of mass (the vertically upward direction is taken as positive and magnitude of gravitational acceleration is indicated as g). Which of the following statements is true for their accelerations?

- $a_{CM} = -g$
- $a_1 = g$
- $a_3 = -2g$

No, the answer is incorrect.
Score: 0
Accepted Answers:

- $a_{CM} = -g$
- $a_1 = -g$
- $a_3 = -g$
A 150 gm ball is dropped from a height of 5 meter and bounces back with the same speed after hitting the ground. The impulse that it imparts to the ground is close to which of the following?
(Take g= 9.8 m/s²)

- 3 Ns
- 1.5 Ns
- 0
- 6 Ns

No, the answer is incorrect.
Score: 0
Accepted Answers:
3 Ns

10A 900-g plate is held above ground by a fountain of water. The speed of water drops, before they hit the plate, is 4 m/s. If the water drops strop momentarily after hitting the plate, the rate at which water is coming out of the fountain is close to (g = 9.8 m/s²)

- 1.2 kg/s
- 2.2 kg/s
- 1.0 kg/s
- 0.4 kg/s

No, the answer is incorrect.
Score: 0
Accepted Answers:
2.2 kg/s

11In a rocket engine, the hot gas generated in the combustion chamber exits the nozzle with a mass flow rate of 314 kg/s and a relative velocity of 4545 m/s. The thrust produced by the engine is close to

- 1427 KN
- 2172 KN
- 1290 KN
- 1354 KN

No, the answer is incorrect.
Score: 0
Accepted Answers:
1427 KN

12A spacecraft of mass 90 kg, moving at an instantaneous speed of 2.4 x 10⁴ m/s, picks up interstellar dust at the rate of 4.2 x 10⁻⁸ kg/s. Assuming that the dust was initially at rest, the instantaneous rate of retardation of the spacecraft is close to

- 7.9 x 10⁻⁶ m/s²
- 1.12 x 10⁻⁶ m/s²
- None
- 1.12 x 10⁻⁶ m/s²

No, the answer is incorrect.
Score: 0
Accepted Answers:
1.12 x 10⁻⁶ m/s²

13A projectile of mass m is shot with initial speed v₀ at an angle θ₀ from the horizontal. If the drag force F of the air is −kv, then the angle θ between the horizontal velocity and the radial vector at the highest point is given by (Assume \(\frac{k_0}{mg} \) \(\sin(\theta_0) \ll 1 \))

\[
\tan^{-1}\left\{(1 + \frac{k_0}{mg} \sin(\theta_0)) \frac{\tan(\theta_0)}{x}\right\}
\]
\[
\begin{align*}
\tan\left(1 + \frac{k_0}{mg} \sin(\theta_0)\right) \tan(\theta_0) \\
\tan^{-1}\left(1 + \frac{k_0}{mg} \cos(\theta_0)\right) \frac{\tan(\theta_0)}{2} \\
\tan\left(1 + \frac{k_0}{mg} \sin(\theta_0)\right) \cot(\theta_0)
\end{align*}
\]

No, the answer is incorrect.

Score: 0

Accepted Answers:
\[
\tan^{-1}\left(1 + \frac{k_0}{mg} \sin(\theta_0)\right) \frac{\tan(\theta_0)}{2}
\]