1. Obtain the Hamiltonian for a charged particle in a time varying electromagnetic field. Write it explicitly by neglecting terms in square of the magnetic field, \(\mathbf{B} \), \(\mathcal{O}(\mathbf{B}^2) \) (or rather \(\mathcal{O}(\mathbf{A}^2) \), where \(\mathbf{A} \) is the magnetic vector potential).

2. Describe the motion of a charged particle in a constant magnetic field, \(\mathbf{B} = B\mathbf{k} \). Choose the vector potential, \(\mathbf{A} = (-B, 0, 0) \) and a gauge in which the scalar potential, \(\phi = 0 \). This is called as the Landau gauge.

3. A particle of charge \(q \) executing simple harmonic motion along \(x \)-axis is acted upon by a time dependent electric field having a form, \(E = E_0 e^{-t^2/\tau^2} \), where \(E_0 \) and \(\tau \) are constants. If the oscillator is in the ground state at \(t = -\infty \), using first order time dependent perturbation theory, find the probability that the particle will be found in one of the excited states at \(t \to \infty \). Also explain which of the excited state(s) it can go to?

4. Compute the coefficients \(c_m(t) \) and \(c_k(t) \) upto second order for a two-level system for a general initial condition \(c_m(0) = m \) and \(c_k(0) = k \).

5. Find a relation between the half-life \((t_{1/2}) \) of an excited state and the lifetime \((\tau) \) of the state.

6. Consider a perturbation of the form applied to a two-level system \((a \) and \(b) \),
\[H' = U\delta(t) \]
Assume \(U \) is Hermitian and the diagonal elements of \(U \) between the unperturbed states of the two-level system vanishes. Further assume \(c_a(-\infty) = 1 \) and \(c_b(-\infty) = 0 \). Find \(c_a(t) \) and \(c_b(t) \). Also find the probability of transition as \(t \to \infty \).
Assume:
\[
\delta_\epsilon(t) = \begin{cases}
\frac{1}{2\epsilon} & \text{for } -\epsilon < t < \epsilon \\
0 & \text{otherwise}
\end{cases}
\]