1. Apply Bohr-Sommerfeld quantization condition (BSQC) to obtain:
 (i) Bohr’s postulate, (ii) energy levels of a particle in an infinite 1-dimensional well,
 (iii) energy levels of a simple harmonic oscillator.

2. Obtain the differential cross section $\sigma(\theta)$ using Born approximation, for the shielded
 Coulomb potential of the form,
 $$V(r) = -\alpha \frac{e^{-r/a}}{r},$$
 where α and a are constants (a is related to the range of the potential).

3. Obtain the s-wave phase shift and hence the total scattering cross section for very
 low energy (E) scattering (small E implies $ka \ll 1$ where $k = \sqrt{2mE/\hbar}$) using the
 method of phase shifts for the following potential.
 $$V(r) = \begin{cases}
 -V_0 & \text{for } r \leq a \\
 0 & \text{for } r > a
 \end{cases}$$
 where a is some range of the potential.

4. Calculate the total cross section in the low energy limit using the method of partial
 waves for a hard sphere potential of the form,
 $$V(r) = \begin{cases}
 \infty & \text{for } r \leq a \\
 0 & \text{for } r > a
 \end{cases}$$
 where a is some range of the potential. Explain clearly why does one need to consider
 a few number of partial waves for low incident energies.

5. For a potential profile $V(x)$ as shown below (E being the energy of the particle),
 ![Potential Profile](image)
 (i) Write down the wavefunctions in all the 3 regions.
 (ii) Hence find the transmission coefficient.