Advanced Condensed Matter Physics/S. Basu/Assignment-8

Only correctness of the final answers will be checked. You may box the final answer.

1. Write down the relationship between resistance, R and resistivity, ρ involving geometrical parameters, such as dimension of the system, L. Verify the relation in 3 dimensions.

2. (a) Assume a 2×2 structure for the resistivity, ρ and the conductivity, σ matrices. Write expressions for σ_{xx} (diagonal elements) and σ_{xy} (off-diagonal elements) in terms of ρ_{xx} and ρ_{xy}.

 (b) What does $\sigma_{xx} = 0$ signify in classical electrodynamics?

 (c) When $\sigma_{xx} = 0$, what are the corresponding values of ρ_{xx} and σ_{xy}?

3. For a gauge transformation of the vector potential of the form:

 $$\tilde{A} \rightarrow \tilde{A} - \nabla \chi$$

 (χ being an arbitrary scalar), write down the transformation of the wavefunction, $\psi(r)$. Does $|\psi(r)|^2$ remain invariant under such transformation?

4. Write down the eigenfunction for a free particle of mass m and charge, q in a uniform magnetic field, B applied in the z-direction. You may assume a Landau gauge of the form,

 $$\tilde{A} = (-By, 0, 0)$$

 What are the corresponding eigenvalues?

5. Compute the degeneracy of the Landau levels. What is the relationship between this degeneracy (per unit area of the sample) and the Hall quantization (ν) in terms of the electron density, n?

Your Submission:

Due Date Exceeded.
As per our records you have not submitted this assignment.