Assignment 6

1. Tick the correct combination relation(s):
 a) ψ_1, ψ_2
 b) ψ_1, ψ_2, ψ_3
 c) $\psi_1, \psi_2, \psi_3, \psi_4$
 d) $\psi_1, \psi_2, \psi_3, \psi_4, \psi_4$

 No. 1 is the correct combination relation.

2. For a particle subjected to the potential $V(x) = \frac{1}{2} m \omega^2 x^2$, where ω is positive, we expect energy eigenfunctions to have a dispersion of:
 a) True
 b) False

 Energy eigenfunctions have a linear dispersion.

3. The commutator bracket $[\hat{H}, \hat{p}]$ will be:
 a) \hbar
 b) $i\hbar$
 c) $2\hbar$
 d) 0

 $[\hat{H}, \hat{p}] = i\hbar$.

4. The Hamiltonian operator is Hermitian.

 where $H_{total} = H_1 + H_2$ for the subsystem 1 and 2.

 The Hamiltonian operator is Hermitian.

5. For the Hamiltonian $\hat{H} = \hat{H}_1 + \hat{H}_2$, the time-evolved state $|\psi(t)\rangle$ of the total state $|\psi(0)\rangle$ is found:
 a) True
 b) False

 Time-evolved state $|\psi(t)\rangle$ can be found.

6. Given that $|\Psi\rangle = |z\rangle$, where z is a complex number. The component of the total unperturbed state $|\Psi\rangle$ will be:
 a) $|z\rangle$
 b) $|\Psi\rangle$
 c) $\langle z|$
 d) $\langle z|\Psi\rangle$

 The component of the total unperturbed state $|\Psi\rangle$ is $|z\rangle$.

7. For a polarization matrix $P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, the ordinary diagonalizing matrix will be:
 a) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
 b) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
 c) $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$
 d) $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$

 The ordinary diagonalizing matrix is $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

8. The quantum mechanical operator form of the angular momentum L_z is:
 a) True
 b) False

 The quantum mechanical operator form of the angular momentum L_z is \hat{L}_z.

9. The Pauli matrices, in the definition of spin-1/2 operators, $\sigma_x, \sigma_y, \sigma_z$ are hermitian and have trace equal to 1.
 a) True
 b) False

 The Pauli matrices have trace equal to 1.

10. The eigenvalues of spin-1/2 systems described by $H = g_s B \cdot \sigma$, are:
 a) $g_s B \sigma_z$
 b) $g_s B \sigma_x$
 c) $g_s B \sigma_y$
 d) $g_s B \sigma_z$ and $g_s B \sigma_x$ and $g_s B \sigma_y$.

 The eigenvalues of spin-1/2 systems described by $H = g_s B \cdot \sigma$ are $g_s B \sigma_z$ and $g_s B \sigma_x$ and $g_s B \sigma_y$.

11. A Hamiltonian \hat{H} is Hermitian if:
 a) True
 b) False

 A Hamiltonian \hat{H} is Hermitian.

12. The eigenvalues of spin-1/2 systems described by $H = g_s B \cdot \sigma$, are:
 a) $g_s B \sigma_z$
 b) $g_s B \sigma_x$
 c) $g_s B \sigma_y$
 d) $g_s B \sigma_z$ and $g_s B \sigma_x$ and $g_s B \sigma_y$.

 The eigenvalues of spin-1/2 systems described by $H = g_s B \cdot \sigma$ are $g_s B \sigma_z$ and $g_s B \sigma_x$ and $g_s B \sigma_y$.