Assignment 3

Due on 2000-01-15, 03:00 ET.

1. Find the eigenvalues and eigenvectors of the following matrix:
 \[
 A = \begin{pmatrix}
 1 & 3 \\
 2 & 4 \\
 \end{pmatrix}
 \]

2. Consider the eigenvalue equation \(Au = \lambda u \) where \(u \) is a non-zero vector and \(A \) is a matrix. Prove that if \(\lambda \) is an eigenvalue of \(A \), then \(\lambda^2 \) is also an eigenvalue of \(A^2 \).

3. Let \(T \) be a linear operator on a finite-dimensional vector space. Prove that if \(T \) is diagonalizable, then \(T^2 \) is also diagonalizable.

4. Consider the operator \(T : \mathbb{C}^2 \to \mathbb{C}^2 \) defined by \(T(a, b) = (a, 2b) \). Is \(T \) a normal operator? Justify your answer.

5. Let \(H = L^2([0,1]) \) be the Hilbert space of square-integrable functions on \([0,1]\). Define the operator \(A \) on \(H \) by \(\langle Au, v \rangle = \int_0^1 u'(t)v(t) \, dt \) for all \(u, v \in H \). Is \(A \) a normal operator? Justify your answer.