Assignment 11

1. The allowed angular momenta \(j \) when we add two particles with angular momenta \(j_1 = 3 \) and \(j_2 = 1/2 \) are:
 \[j = |3 + 1/2|, |3 + (-1/2)|, |3 - 1/2|, |3 - (-1/2)| = 3.5, 2.5, 2.0, 1.5 \]

2. The magnetic quantum number \(m_j \) for each angular momentum \(j \) are:

 For \(j = 3.5 \):
 - \(m_j = -3.5, -3.0, -2.5, -2.0, -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 \)

 For \(j = 2.5 \):
 - \(m_j = -2.5, -2.0, -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 \)

 For \(j = 2.0 \):
 - \(m_j = -2.0, -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5, 2.0 \)

 For \(j = 1.5 \):
 - \(m_j = -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5 \)

 For \(j = 0.0 \):
 - \(m_j = 0.0 \)

3. The decay from \(j = 2 \) to \(j = 1/2 \) is allowed. The selection rule is \(
\Delta j = \pm 1, \Delta m_j = 0 \), so the transition can occur.

4. Consider two electrons in an atom. Let the electron be at zero potential. Using the values of \(j \) and \(m_j \) for the two electrons, calculate the angular momentum quantum number \(\ell \) for two different states. Include the limiting cases for the allowed states.

5. Consider two electrons in an atom. Let the electron be at zero potential. Using the values of \(j \) and \(m_j \) for the two electrons, calculate the angular momentum quantum number \(\ell \) for two different states. Include the limiting cases for the allowed states.

6. In the product of the two wave function components, \(\psi_{1} \) is a spin up and \(\psi_{2} \) is a spin down component, \(\psi' \) will be:

 \[\psi' = \psi_{1} \psi_{2} + e^{-i\theta} \psi_{2} \psi_{1} \]

7. The Clebsch-Gordan coefficients \(C_{11}^{00} \) are \(1 \), \(C_{11}^{11} \) are \(2 \), \(C_{11}^{02} \) are \(1 \), and \(C_{11}^{12} \) are \(1 \), where the states of \(\ell \) are:

 \[\ell = 0, 1, 2 \]

8. Let \(\psi(x) \) be a wave function that has a maximum at \(x = 1,2 \) and \(x = 3,4 \). The values of the function at these points are equal. If we expand the function, it will be:

 \[\psi(x) = A_{1}^{0} e^{i\theta(x)} + A_{2}^{0} e^{-i\theta(x)} \]

 where \(A_{1}^{0} \) and \(A_{2}^{0} \) are the coefficients.

9. Consider two electrons in an atom. Let the electron be at zero potential. Using the values of \(j \) and \(m_j \) for the two electrons, calculate the angular momentum quantum number \(\ell \) for two different states. Include the limiting cases for the allowed states.