Tutorial 9: Dynamic analysis

Answer all questions Total marks: 25

1. What are essential characteristics of a dynamic system?

 - Equation of motion is used to characterize the response mathematically.
 - Dynamic system need to be modelled.
 - Essential features of a Dynamic System
 - M - (1) Mass - representing the inertia characteristics
 - K - (2) Stiffness - representing the restoring force capacity
 - C - (3) Dampening - representing the frictional characteristics and energy loss in the system
 - F(t) - (4) An excitation force, representing the external force (if any)

2. Determine the influence co-efficient matrix for the multi-degrees-of-freedom system shown in the below figure:

 ![Diagram of a multi-degrees-of-freedom system](image)

 \[
 \text{Influence Co-efficient Matrix } \delta = \begin{bmatrix}
 6 & 5 & 3 \\
 5 & 7 & 4 \\
 3 & 4 & 6
 \end{bmatrix}
 \]

3. Determine the fundamental frequency of the system whose \([M]\) and influence coefficient matrix \(\delta\) are given as below:

 \[
 M = \begin{bmatrix}
 60 & 0 & 0 \\
 0 & 100 & 0 \\
 0 & 0 & 80
 \end{bmatrix},
 \delta = \begin{bmatrix}
 6 & 5 & 3 \\
 5 & 7 & 4 \\
 3 & 4 & 6
 \end{bmatrix}
 \]

4. Evaluate the frequency and mode shape for the MDOF system using Influence coefficient method. Use Dunkerley's method to evaluate natural frequency of the system.

 ![Diagram of a MDOF system](image)

 \[m = 35 \text{ kN}; \ K = 1000 \text{ kN/m}\]

5. Evaluate the fundamental frequency and mode shape for the MDOF system using Stodola method.

Copyright to Prof. S. Chandrasekaran, IIT Madras