Assignment 8

The due date for submitting this assignment has passed. As per our records, you have not submitted this assignment.

1) What is the method to avoid intermetallic grade in ladle?
 - Separation
 - Preheating the metal
 - Using a proper ladle
 - None of the above
 No, the answer is incorrect.
 Accepted Answer: None of the above

2) What are the factors affecting the purity of ingot?
 - Inclusion formation
 - Defect formation
 - Melted metal
 - None of the above
 No, the answer is incorrect.
 Accepted Answer: All of the above

3) Which of the following is not a factor affecting the purity of ingot?
 - Temperature
 - Time
 - Melted metal
 - None of the above
 None of the above
 Accepted Answer: None of the above

4) If 1000000 inclusion particles come from steel during refining operation, SSD inclusion particles escape from ladle outlet, then the percentage of inclusion removal efficiency of ladle will be:
 - 98%
 - 96%
 - 95%
 - None of the above
 98%
 Accepted Answer: 98%

5) The ratio of head to surface tension force is known as:
 - Tensile number
 - Welder number
 - Head number
 - None of the above
 Tensile number
 Accepted Answer: Tensile number

6) The phenomenon of emulsification of a lighter liquid into a bulk heavier liquid is known as:
 - Foaming
 - Inversion
 - Dropping
 - None of the above
 None of the above
 Accepted Answer: None of the above

7) Fluids of uniform velocity and density having a characteristic length and velocity are:
 - Laminar flow
 - Newtonian
 - Conductive
 - None of the above
 Laminar flow
 Accepted Answer: Laminar flow

8) The characteristic fluid flow is:
 - Viscous
 - Viscous flow
 - Conductive
 - None of the above
 None of the above
 Accepted Answer: None of the above

9) The Reynolds number is given by:
 \[Re = \frac{d_\text{v}}{\mu} \]
 - Re = \frac{d_\text{v}}{\mu}
 - Re = \frac{d_\text{v}}{\mu}
 - Re = \frac{d_\text{v}}{\mu}
 - None of the above
 Re = \frac{d_\text{v}}{\mu}
 Accepted Answer: Re = \frac{d_\text{v}}{\mu}