NPTEL » Ironmaking and St Unit 3 - Week 1	· · · · · · · · · · · · · · · · · · ·	Mentor
Course outline How does an NPTEL online	Assignment 1	
Week 0 Week 1	The due date for submitting this assignment has passed. As per our records you have not submitted this assignment. Common data for question 1 to 6	, 23:59 IST.
Lecture 01 : Introduction Lecture 02 : Various Routes of steelmaking Lecture 03 : The Iron Blast	Throat height - 1.5 m Throat diameter - 7.3 m	
Furnace Lecture 04 : Thermodynamics of BF ironmaking Lecture 05 : Thermodynamics	Shaft angle - 83° Shaft height - 16.4m Belly height - 3m Bosh angle - 81°	
of BF Ironmaking (continued) • Week 1 Lecture Material • Quiz : Assignment 1 • Week 1 Feedback Form	Hearth height - 5m Hearth diameter - 9.8m Iron notch - 1m above bottom of the hearth Stock line - 1m below the top of the throat The furnace produces 3800 THM/day.	
Week 2 Week 3 Week 4	Refractory lining thickness is 1m and it is made of fireclay bricks of density 2500kg/m³. Standard brick size is: 0.23m x0.11m x0.06m and cost Rs.30 per brick.	
Week 5 Week 6	The belly diameter of the blast furnace is m	
Week 7 Week 8 Week 9	No, the answer is incorrect. Score: 0 Accepted Answers: (Type: Range) 11.10,11.56	
Week 10 Week 11	Bosh height of the blast furnace is m	1 point
Download Videos Assignment Solution	No, the answer is incorrect. Score: 0 Accepted Answers: (Type: Range) 4.73,4.92	
Live Interactive session Text Transcripts	Working height of the blast furnace is m	1 point
	No, the answer is incorrect. Score: 0 Accepted Answers: (Type: Range) 24.23,25.22	
	Total inner height of the blast furnace is m	1 point
	No, the answer is incorrect. Score: 0 Accepted Answers: (Type: Range) 30.11,31.34	
	Total refractory volume= m ³	1 point
	No, the answer is incorrect. Score: 0 Accepted Answers: (Type: Range) 1010,1053	
	Calculate the total cost of the refractory lining. a. 24670000	4 points 2 points
	b. 22567890 c. 20395000 d. 17005600	
	 a. b. c. d. 	
	No, the answer is incorrect. Score: 0 Accepted Answers: c.	
	Given standard free energy change for the following reactions: (a) 250(a) + 2/2 O (b) = 50 O (c) = 405450 + 61 38T col/mol	
	(a) $2\text{Fe}(s) + 3/2 \text{ O}_2(g) = \text{Fe}_2\text{O}_3(s)$ $\Delta G^\circ = -195450 + 61.38\text{T cal/mol}$ (b) $3\text{Fe}(s) + 2 \text{ O}_2(g) = \text{Fe}_3\text{O}_4(s)$ $\Delta G^\circ = -265660 + 76.81\text{T cal/mol}$ (c) $\text{Fe}(s) + \frac{1}{2} \text{ O}_2(g) = \text{FeO}(s)$ $\Delta G^\circ = -63200 + 15.47\text{T cal/mol}$	
	Calculate the dissociation pressure of oxygen of Fe ₂ O ₃ at 900°C. a. 3.2 × 10 ⁻¹⁵ atm b. 6.6 × 10 ⁻¹⁷ atm	3 points
	c. $4.5 \times 10^{-18} atm$ d. $4.6 \times 10^{-16} atm$	
	a. b. c. d. No, the answer is incorrect.	
	No, the answer is incorrect. Score: 0 Accepted Answers: d. Calculate the chemical potential of oxygen of Fe ₂ O ₃ at 900°C.	1 point
	Calculate the chemical potential of oxygen of Fe ₂ O ₃ at 900°C. a82.3Kcal/mol b85.6Kcal/mol c70.5Kcal/mol	
	c/0.5Kcal/mol d65.1Kcal/mol a. b.	
	C. C. Od. No, the answer is incorrect. Score: 0 Accepted Answers:	
	9) Calculate the dissociation pressure of oxygen of Fe ₃ O ₄ at 900°C.	2 points
	a. $3.33 \times 10^{-16} atm$ b. $4.42 \times 10^{-19} atm$ c. $3.33 \times 10^{-18} atm$	
	d. $4.42 \times 10^{-17} atm$	
	C. Od. No, the answer is incorrect. Score: 0	
	Accepted Answers: d. Calculate the chemical potential of oxygen of Fe ₃ O ₄ at 900°C.	1 point
	a87.77Kcal/mol b92.13Kcal/mol c82.19Kcal/mol	
	d76.66Kcal/mol a. b. c.	
	Od. No, the answer is incorrect. Score: 0 Accepted Answers: a.	
	Calculate the dissociation pressure of oxygen of FeO at 900°C. a. $1.62 \times 10^{-17} atm$	2 points
	b. $4.59 \times 10^{-16} atm$ c. $3.15 \times 10^{-18} atm$ d. $4.56 \times 10^{-15} atm$	
	 □ a. □ b. □ c. □ d. 	
	No, the answer is incorrect. Score: 0 Accepted Answers: a.	
	Calculate the chemical potential of oxygen of FeO at 900°C. a86.17 Kcal / mol b90.11 Kcal / mol	1 point
	c80.16 <i>Kcal / mol</i> d76.66 <i>Kcal / mol</i> a.	
	 b. c. d. No, the answer is incorrect. Score: 0	
	Accepted Answers: b. Common data for question 13 to 18	
	Given standard free energy change data for following reactions Reaction Standard free energy change (Cal/mole)	
	$C(s) + \frac{1}{2} O_2(g) = CO(g)$ $-28200 - 20.16T$ 1 $C(s) + O_2(g) = CO_2(g)$ $-94250 - 0.27T$ 2 $2Fe(s) + \frac{3}{2} O_2(g) = Fe_2O_3(s)$ $-195450 + 61.38T$ 3 $3Fe(s) + 2 O_2(g) = Fe_3O_4(s)$ $-265660 + 76.81T$ 4	
	Fe(s) + ½ O ₂ (g) = FeO(s) - 63200 + 15.47T 5 13) Calculate the equilibrium volume fraction of CO for the reaction Fe ₂ O ₃ →Fe ₃ O ₄ , at 900 °C. a. 0	3 points
	a. 0 b. 0.1 c. 0.15 d. 0.2	
	a. b. c. d.	
	No, the answer is incorrect. Score: 0 Accepted Answers: a. Calculate % CO utilization for the reaction Fe ₂ O ₂ → Fe ₂ O ₄ at 900 °C	1 point
	a. 90 b. 46 c. 84	
	d. 100 a. b.	
	C. Od. No, the answer is incorrect. Score: 0 Accepted Answers:	
	d. Calculate the equilibrium volume fraction of CO for the reaction Fe₃O₄ → FeO at 900 °C a. 0.27	3 points
	b. 0.20 e. 0.70 d. 0.73	
	a. b. c. d. No, the answer is incorrect.	
	No, the answer is incorrect. Score: 0 Accepted Answers: a. Calculate the % CO utilization for the reaction Fe₃O₄ →FeO at 900 °C	1 point
	a. 20 b. 30 c. 73	
	d. 80 a. b. c.	
	Od. No, the answer is incorrect. Score: 0 Accepted Answers: c.	
	 Calculate the equilibrium volume fraction of CO for the reaction FeO→Fe at 900 °C a. 0.27 b. 0.73 c. 0.37 	3 points
	d. 0.90 a. b.	
	C. Od. No, the answer is incorrect. Score: 0 Accepted Answers:	
	D. Calculate the % CO utilization for the reaction FeO → Fe at 900 °C a. 37 b. 57	1 point
	c. 27 d. 87	
	○ b. ○ c. ○ d. No, the answer is incorrect. Score: 0	
	Accepted Answers: c. Amount of carbon (in kg) required to produce one ton of iron from Fe ₂ O ₃ for 45% direct reduction and rest	4 points
	indirect reduction in blast furnace is a. 700 kg b. 272 kg	
	c. 173 kg d. 321 kg	
	 b. c. d. No, the answer is incorrect.	
	Score: 0 Accepted Answers: b. With reference to question number 19, assess whether CO available after wustite reduction is	2 points
	sufficient to remove rest of the ore oxygen from higher oxides like hematite and magnetite. a. Yes b. No	
	a. b. No, the answer is incorrect. Score: 0 Accepted Answers:	
	Accepted Answers: a.	