Assignment 6

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.

1. Find the Eigenvalues of the following ternary interdiffusivity matrix:

\[
D = \begin{bmatrix} 1.4 & -1.8 \\ -0.5 & 2 \end{bmatrix} \times 10^{-12} \text{ m}^2/\text{s}
\]

- (0.562, 0.567) \times 10^{-12} \text{ m}^2/\text{s}
- (0.522, 3.451) \times 10^{-12} \text{ m}^2/\text{s}
- (0.761, -2.695) \times 10^{-12} \text{ m}^2/\text{s}
- (2.799, 0.657) \times 10^{-12} \text{ m}^2/\text{s}

No, the answer is incorrect. Score: 0

Accepted Answer:
\[(0.562, 0.567) \times 10^{-12} \text{ m}^2/\text{s} \]

2. Find the similarity transformation matrix \(P \) for the interdiffusivity matrix in Problem 1 such that \(P^T D P = \lambda \) where \(\lambda \) is the diagonal matrix of Eigenvalues of \(D \).

- \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)
- \(\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \)
- \(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \)
- \(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \)

No, the answer is incorrect. Score: 0

Accepted Answer:
\[\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \]

3. A single-phase alloy of component 1-2-3 exhibits micro-segregation with a sinusoidal pattern of period 100 pm. The average composition and amplitudes of the initial sinusoidal pattern are given in the table below. Determine the composition at a location of \(x = 20 \) pm after homogenization of the alloy at 700°C for 12 hours. Assume that the molar volume and interdiffusivity matrix are independent of composition. The interdiffusivity matrix at 700°C is given as follows:

\[
D = \begin{bmatrix} 1.4 & -1.8 \\ -0.5 & 2 \end{bmatrix} \times 10^{-12} \text{ m}^2/\text{s}
\]

<table>
<thead>
<tr>
<th>Compositions (in atom%)</th>
<th>Component-1</th>
<th>Component-2</th>
<th>Component-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average composition (c)</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Amplitudes (c')</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

- \((c_1, c_2, c_3) = (0.3, 0.3, 0.4) \) atom% each
- \((c_1, c_2, c_3) = (0.2, 0.2, 0.1) \) atom% each
- \((c_1, c_2, c_3) = (0.4, 0.3, 0.2) \) atom% each
- \((c_1, c_2, c_3) = (0.2, 0.2, 0.1) \) atom% each

No, the answer is incorrect. Score: 0

Accepted Answer:
\((c_1, c_2, c_3) = (0.2, 0.2, 0.1) \) atom% each

4. In Problem 3 above, what should be the amplitudes of the profiles at the end of 12 hours of homogenization at 700°C?

- \((c_1, c_2, c_3) = (0.3, 0.2, 0.5) \) atom%
- \((c_1, c_2, c_3) = (0.4, 0.3, 0.2) \) atom%
- \((c_1, c_2, c_3) = (0.2, 0.4, 0.5) \) atom%
- \((c_1, c_2, c_3) = (0.3, 0.2, 0.5) \) atom%

No, the answer is incorrect. Score: 0

Accepted Answer:
\((c_1, c_2, c_3) = (0.2, 0.2, 0.1) \) atom%

5. A single-phase binary alloy exhibits an initial concentration profile given by the following periodic function with period \(2 \lambda \), amplitude \(b \), and average concentration \(C \).

\[
C(x, 0) = C + 2b \sin \left(\frac{2\pi x}{2\lambda} \right) \text{ mol/m}^3
\]

If the alloy is subjected to homogeneous heat treatment for time \(t \), derive the equation for the concentration profile as a function of distance coordinate \(x \) and homogenization time \(t \). Assume constant interdiffusion coefficient and constant molar volume. The concentration at \(x = 0 \), \(t = 0 \) remains constant at \(C \) at all times.

- \(x(t) = C + b \sin \left(\frac{2\pi x}{2\lambda} \right) \exp (-D\tau) \text{ mol/m}^3 \)
- \(x(t) = C + b \sin \left(\frac{2\pi x}{2\lambda} \right) \exp (-2D\tau) \text{ mol/m}^3 \)
- \(x(t) = C + b \sin \left(\frac{2\pi x}{2\lambda} \right) \exp (-D\tau) \text{ mol/m}^3 \)
- \(x(t) = C + b \sin \left(\frac{2\pi x}{2\lambda} \right) \exp (-2D\tau) \text{ mol/m}^3 \)

No, the answer is incorrect. Score: 0

Accepted Answer:
\(x(t) = C + b \sin \left(\frac{2\pi x}{2\lambda} \right) \exp (-D\tau) \text{ mol/m}^3 \)