Unit 9 - Week 7

EL online	Assignment 6	
	The due date for submitting this assignment has passed. As per our records you have not submitted this assignment. Due on 2020-11-11	1, 23:59 IST.
	INSTRUCTIONS:	
	(A) The marks that each question carries is marked against the question.	
	(B) There can be more than one correct answers for a question.	2 points
	Which of the following metal/alloys suffer crevice corrosion in sea water? 204 steinless steel	3 points
	☐ 304 stainless steel ☐ Aluminum	
	Carbon steel	
	☐ Brass ☐ Titanium metal	
	No, the answer is incorrect.	
	Score: 0 Accepted Answers:	
ion:	304 stainless steel Aluminum	
		4
	Predict the alloy having the highest pitting resistance.	4 points
	654 SMo (super austenitic stainless steel)	
	C Mn Cr Ni Mo N Cu Fe	
	0.01% 3.5% 24% 22% 7.3% 0.5% 0.5% balance	
	2507 (duplex stainless steel)	
	Cr Ni Mo Mn Si Cu N P C S Fe	
	26% 8% 5% 1.2% 0.8% 0.5% 0.32% 0.035 0.03% 0.02% balanc	
	S32707a (duplex stainless steel)	
	0.03% 0.5% 1.5% 0.035 0.01% 27% 6.5% 4.8% 0.4% 1% balanc	
	% e	
	S39277 (duplex ss)	
	C Mn P S Si Ni Cr Mo N Cu W Fe	
	0.025 0.8% 0.025 0.002 0.8% 8% 26% 4% 0.33 2% 1.2% balan ce	
	904L SS	
	Ni Cr Mo Cu Mn Si P S Fe	
	28% 23% 5% 2% 2% 1% 0.045% 0.035% balance	
	No, the answer is incorrect. Score: 0	
	Accepted Answers:	
	654 SMo (super austenitic stainless steel)	
	C Mn Cr Ni Mo N Cu Fe	
	0.01% 3.5% 24% 22% 7.3% 0.5% 0.5% balance	
	3) The following electrochemical parameters is less important for developing crovice corrector resistant allows for a given confection	2 naint
	The following electrochemical parameters is less important for developing crevice corrosion resistant alloys for a given application Critical current density	3 points
	Critical current density Passivation potential	
	☐ Tafel slopes	
	Passive current density Corresion current density	
	No, the answer is incorrect.	
	Score: 0 Accepted Answers:	
	Tafel slopes	
	Corrosion current density	
	4) Crevice corrosion and pitting corrosion growth of an alloy is mainly due to	
	Chloride levels of the pit and crevice	4 point
		4 point
	High hydroxides within the pit and crevice	4 point
		4 point
	High hydroxides within the pit and crevice High H ⁺ ion concentration in the pit/crevice	4 point
	High hydroxides within the pit and crevice High H ⁺ ion concentration in the pit/crevice Steep potential drop within the pit/crevice	4 poin
	High hydroxides within the pit and crevice High H ⁺ ion concentration in the pit/crevice Steep potential drop within the pit/crevice The exposed corrosive environment does not allow the alloy to passivate at all. No, the answer is incorrect. Score: 0 Accepted Answers:	4 point
	High hydroxides within the pit and crevice High H ⁺ ion concentration in the pit/crevice Steep potential drop within the pit/crevice The exposed corrosive environment does not allow the alloy to passivate at all. No, the answer is incorrect. Score: 0 Accepted Answers: Chloride levels of the pit and crevice High H ⁺ ion concentration in the pit/crevice	4 poin
	High hydroxides within the pit and crevice High H ⁺ ion concentration in the pit/crevice Steep potential drop within the pit/crevice The exposed corrosive environment does not allow the alloy to passivate at all. No, the answer is incorrect. Score: 0 Accepted Answers: Chloride levels of the pit and crevice	4 poin
	High hydroxides within the pit and crevice High H ⁺ ion concentration in the pit/crevice Steep potential drop within the pit/crevice The exposed corrosive environment does not allow the alloy to passivate at all. No, the answer is incorrect. Score: 0 Accepted Answers: Chloride levels of the pit and crevice High H ⁺ ion concentration in the pit/crevice	
	High Hydroxides within the pit and crevice High H ⁺ ion concentration in the pit/crevice Steep potential drop within the pit/crevice The exposed corrosive environment does not allow the alloy to passivate at all. No, the answer is incorrect. Score: 0 Accepted Answers: Chloride levels of the pit and crevice High H ⁺ ion concentration in the pit/crevice Steep potential drop within the pit/crevice 5) Which of the following metal/alloys suffer pitting corrosion in seawater?	
	High H ⁺ ion concentration in the pit/crevice Steep potential drop within the pit/crevice The exposed corrosive environment does not allow the alloy to passivate at all. No, the answer is incorrect. Score: 0 Accepted Answers: Chloride levels of the pit and crevice High H ⁺ ion concentration in the pit/crevice Steep potential drop within the pit/crevice 5) Which of the following metal/alloys suffer pitting corrosion in seawater? 304 stainless steel Aluminum	
	 High hydroxides within the pit and crevice High H⁺ ion concentration in the pit/crevice Steep potential drop within the pit/crevice The exposed corrosive environment does not allow the alloy to passivate at all. No, the answer is incorrect. Score: 0 Accepted Answers: Chloride levels of the pit and crevice High H⁺ ion concentration in the pit/crevice Steep potential drop within the pit/crevice Which of the following metal/alloys suffer pitting corrosion in seawater? □ 304 stainless steel □ Aluminum □ Carbon steel 	
	High H ⁺ ion concentration in the pit/crevice Steep potential drop within the pit/crevice The exposed corrosive environment does not allow the alloy to passivate at all. No, the answer is incorrect. Score: 0 Accepted Answers: Chloride levels of the pit and crevice High H ⁺ ion concentration in the pit/crevice Steep potential drop within the pit/crevice 5) Which of the following metal/alloys suffer pitting corrosion in seawater? 304 stainless steel Aluminum	
	High hydroxides within the pit and crevice High H ⁺ ion concentration in the pit/crevice Steep potential drop within the pit/crevice The exposed corrosive environment does not allow the alloy to passivate at all. No, the answer is incorrect. Score: 0 Accepted Answers: Chloride levels of the pit and crevice High H ⁺ ion concentration in the pit/crevice Steep potential drop within the pit/crevice 5) Which of the following metal/alloys suffer pitting corrosion in seawater? 304 stainless steel Aluminum Carbon steel Brass Titanium metal No, the answer is incorrect.	
	High hydroxides within the pit and crevice High H ⁺ ion concentration in the pit/crevice Steep potential drop within the pit/crevice The exposed corrosive environment does not allow the alloy to passivate at all. No, the answer is incorrect. Score: 0 Accepted Answers: Chloride levels of the pit and crevice High H ⁺ ion concentration in the pit/crevice Steep potential drop within the pit/crevice 5) Which of the following metal/alloys suffer pitting corrosion in seawater? 304 stainless steel Aluminum Carbon steel Brass Titanium metal No, the answer is incorrect. Score: 0 Accepted Answers:	
	High hydroxides within the pit and crevice High H ⁺ ion concentration in the pit/crevice Steep potential drop within the pit/crevice The exposed corrosive environment does not allow the alloy to passivate at all. No, the answer is incorrect. Score: 0 Accepted Answers: Chloride levels of the pit and crevice High H ⁺ ion concentration in the pit/crevice Steep potential drop within the pit/crevice 5) Which of the following metal/alloys suffer pitting corrosion in seawater? 304 stainless steel Aluminum Carbon steel Brass Titanium metal No, the answer is incorrect. Score: 0 Accepted Answers: 304 stainless steel	
	High hydroxides within the pit and crevice High H ⁺ ion concentration in the pit/crevice Steep potential drop within the pit/crevice The exposed corrosive environment does not allow the alloy to passivate at all. No, the answer is incorrect. Score: 0 Accepted Answers: Chloride levels of the pit and crevice High H ⁺ ion concentration in the pit/crevice Steep potential drop within the pit/crevice 5) Which of the following metal/alloys suffer pitting corrosion in seawater? 304 stainless steel Aluminum Carbon steel Brass Titanium metal No, the answer is incorrect. Score: 0 Accepted Answers: 304 stainless steel Aluminum	3 point
	High hydroxides within the pit and crevice High H ⁺ ion concentration in the pit/crevice Steep potential drop within the pit/crevice The exposed corrosive environment does not allow the alloy to passivate at all. No, the answer is incorrect. Score: 0 Accepted Answers: Chloride levels of the pit and crevice High H ⁺ ion concentration in the pit/crevice Steep potential drop within the pit/crevice 5) Which of the following metal/alloys suffer pitting corrosion in seawater? 304 stainless steel Aluminum Carbon steel Brass Titanium metal No, the answer is incorrect. Score: 0 Accepted Answers: 304 stainless steel	3 points
	High hydroxides within the pit and crevice High H ⁺ ion concentration in the pit/crevice Steep potential drop within the pit/crevice The exposed corrosive environment does not allow the alloy to passivate at all. No. the answer is incorrect. Score: 0 Accepted Answers: Chloride levels of the pit and crevice High H ⁺ ion concentration in the pit/crevice Steep potential drop within the pit/crevice 5) Which of the following metal/alloys suffer pitting corrosion in seawater? 304 stainless steel Aluminum Carbon steel Brass Titanium metal No, the answer is incorrect. Score: 0 Accepted Answers: 304 stainless steel Aluminum 6) The following electrochemical parameters is critical for developing pitting corrosion resistant alloys for a given application Critical current density	3 points
	High hydroxides within the pit and crevice High H ⁺ ion concentration in the pit/crevice Steep potential drop within the pit/crevice The exposed corrosive environment does not allow the alloy to passivate at all. No, the answer is incorrect. Score: O Accepted Answers: Chorde levels of the pit and crevice High H ⁺ ion concentration in the pit/crevice Steep potential drop within the pit/crevice 5) Which of the following metal/alloys suffer pitting corrosion in seawater? Aluminum Carbon steel Brass Titanium metal No, the answer is incorrect. Score: O Accepted Answers: 304 stainless steel Aluminum 6) The following electrochemical parameters is critical for developing pitting corrosion resistant alloys for a given application Critical current density Pitting potential	3 points
	High hydroxides within the pit and crevice High H ⁺ ion concentration in the pit/crevice Steep potential drop within the pit/crevice The exposed corrosive environment does not allow the alloy to passivate at all. No. the answer is incorrect. Score: 0 Accepted Answers: Chloride levels of the pit and crevice High H ⁺ ion concentration in the pit/crevice Steep potential drop within the pit/crevice 5) Which of the following metal/alloys suffer pitting corrosion in seawater? 304 stainless steel Aluminum Carbon steel Brass Titanium metal No, the answer is incorrect. Score: 0 Accepted Answers: 304 stainless steel Aluminum 6) The following electrochemical parameters is critical for developing pitting corrosion resistant alloys for a given application Critical current density	3 points
	High hydroxides within the pit and crevice High H ⁺ ion concentration in the pit/crevice Steep potential drop within the pit/crevice The exposed corrosive environment does not allow the alloy to passivate at all. No, the answer is incorrect. Score: 0 Accepted Answers: Chioride levels of the pit and crevice High H ⁺ ion concentration in the pit/crevice Steep potential drop within the pit/crevice 5) Which of the following metal/alloys suffer pitting corrosion in seawater? 304 stainless steel Aluminum Carbon steel Brass Titanium metal No, the answer is incorrect. Score: 0 Accepted Answers: 304 stainless steel Aluminum Circulate Carbon steel Brass Titanium metal Titanium metal No, the answer is incorrect. Score: 0 Accepted Answers: 304 stainless steel Aluminum 6) The following electrochemical parameters is critical for developing pitting corrosion resistant alloys for a given application Critical current density Pitting potential Repassivation potential	3 points
	High hydroxides within the pit and crevice High H ⁺ ion concentration in the pit/crevice Steep potential drop within the pit/crevice The exposed corrosive environment does not allow the alloy to passivate at all. No. the answer is incorrect. Scoie: 0 Accepted Answers: Choride levels of the pit and crevice High H ⁺ ion concentration in the pit/crevice Steep potential drop within the pit/crevice 5) Which of the following metal/alloys suffer pitting corrosion in seawater? 304 stainless steel Aluminum Carbon steel Brass Titanium metal No. the answer is incorrect. Scoie: 0 Accepted Answers: 304 stainless steel Aluminum 6) The following electrochemical parameters is critical for developing pitting corrosion resistant alloys for a given application Critical current density Pitting potential Repassivation potential Corrosion potential	4 points 3 points

Repassivation potential