Unit 5 - Week 3

low does an NPTEL online ourse work?	
Veek 0	
Veek 1	
Veek 2	
Veek 3	
 Lecture 6: Can we calculate t corrosion rate of metals: Mixe potential theory and passivity 	d
Lecture 7: Passivity continued	d
 Lecture 8: DC polarisation experiments and their relation to mixed potential theory/Eva diagram 	
○ Quiz : Assignment 3	
○ Weekly Feedback	
O Download Videos	
 Sample problems for practice 	
Assignment-3 Solutions	
Veek 4	
Veek 5	
Veek 6	
Veek 7	
Veek 8	
Veek 9	
Veek 10	
Veek 11	
Veek 12	
ive Session	
Text Transcripts	

Assignment 3

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment. Due on 2020-10-07, 23:59 IST.

INSTRUCTIONS:

- (A) The marks that each question carries is marked against the question.
- (B) There is only one correct answer for a question.
- (C) Take the E° values from appropriate sources, when not mentioned
- (D) Take: F= 96500 C mol-1

 Linear polarization study of type 316 stainless steel in tap water shows a polarization resistance of 1500 Ω cm². Determine i_{corr} and corrosion rate in

4 points mpy. If β a and β c are 70 and 120 mV $decade^{-1}$ respectively, atomic mass of Fe= 55.85 g mol^{-1} , density of Fe= 7.87 g mol^{-1} .

- 8.43 µA cm⁻², 4.85 mpy
- 14.58 µA cm⁻², 8.77 mpy
- O 12.79 µA cm⁻², 5.90 mpy
- 17.22 μA cm⁻², 10.12 mpy

No, the answer is incorrect.

Accepted Answers: 12.79 μA cm⁻², 5.90 mpy

Common data for Q2- Q4: In an alloy development program anodic curves were generated for the medium of interest. The following is the summary of relevant results determined from these curves

Sr. No.	Alloy	Epp [V _{SHE})]	i _p (μA cm ⁻²)	i _c (μA cm ⁻²)
1	Fe	-0.1	500	5000
2	Fe-18Cr	-0.2	30	150
3	Fe-25Cr	-0.3	0.5	130
4	Fe-18Cr-8Ni	-0.4	10	120
5	Fe-18Cr-8Ni-3Mo	-0.5	10	50

2) If the limiting current density for the cathodic reaction is found to be 100 µA cm⁻² gives the order increasing corrosion resistance of 3 points the alloys.

- 0 1 = 2 = 3 = 4 < 5
- 01=2=3<4=5
- 01<4<2<5<3
- 02<3<1<5<4

No, the answer is incorrect. Score: 0

Accepted Answers:

1 =2 =3 =4 < 5

3) If the velocity V₁ causes an increase in limiting current density of cathodic reaction to 125 μA cm⁻², what would be the order of increase in corrosion 3 points resistance of the alloys under this condition?

- 04<2<3<1<5
- 02<4<1<3<5
- 01=2=3<4=5
- 01<3<2<4=5

No, the answer is incorrect.

Accepted Answers: 1 = 2 = 3 < 4 = 5

4) If the velocity V₂ causes an increase in limiting current density of cathodic reaction to 155 μA cm⁻², what would be the order of increase in corrosion resistance of the alloys under this condition?

- 01<2<4=5<3
- 3 < 4 = 5 < 2 < 1 02<1<4=5<3
- 01<3<2<4=5

No, the answer is incorrect.

Score: 0

Accepted Answers: 1<2<4=5<3

5) Corrosion current density of the storage tanks made of the alloy 5 given in the above problem having a surface area of 10 m² is required to be brought down to 10 μA cm⁻² using platinum as a cathode. The platinum cathode is shorted. The cathodic reaction on platinum is hydrogen evolution as the solution is 0.5 M sulfuric acid shrouded with hydrogen gas of 1 atmosphere. What is the minimum surface area of the platinum sheet required in such a case to obtain the required corrosion current density. The exchange current density for hydrogen evolution on platinum is 1 mA cm⁻² and the Tafel slope for hydrogen reduction reaction is 120 mV decade⁻¹.

- 0.34 cm²
- 0.78 cm²
- 0.25 cm² 0.54 cm²

No, the answer is incorrect. Score: 0

Accepted Answers:

0.34 cm²