Assignment 7

The data for submitting this assignment has passed. As per our records you have not submitted this assignment.

1. Find the natural angular frequency of the unit cell of a monocrystalline metalloid with mass attached, where the membrane stiffness is 1500 N/m² and membrane mass is 0.3 grams. Mass of attached mass is 170 grams.

 - 9.5 rad/s
 - 116 rad/s
 - 60 rad/s
 - 58 rad/s

 No, the answer is incorrect.

2. The region of effective non-reflective density of a monocrystalline metalloid depends on which of the following factors. Select all that apply.

 - Surface density of the monocrystalline metalloid
 - Shape of the monocrystalline metalloid
 - Colour of the monocrystalline metalloid
 - Wrinkles in the membrane of the monocrystalline metalloid

 No, the answer is incorrect.

3. What is an example of an application of a metalloid that can be used to deposit materials? Select all that apply.

 - Laser pass filters
 - High pass filters
 - Sound pass filters
 - Acoustic devices

 No, the answer is incorrect.

4. What is the layer view of a monocrystalline crystal with square packing in green. Find the scattering function.

 4 cm*

 10 cm*
 Scatterer

 Medium

 - 45°
 - 60°
 - 50°
 - 65°

 No, the answer is incorrect.

5. What is the reciprocal lattice of a simple cubic lattice system?

 - Simple cubic
 - Face-centred cubic
 - Body-centred cubic
 - Hexagonal

 No, the answer is incorrect.

6. What is the coordinate system of a reciprocal space of lattice?

 - Cartesian coordinates and line coordinates
 - Moiré coordinates
 - Angular frequency and angular displacement
 - Angular frequency and wavenumber

 No, the answer is incorrect.

7. Figure shows an actual and a transmission line that contains the monocrystalline 2 and rolls in series. Dimensions of the unit cells are uniform through the transmission line. The tension applied to membrane gives it a stiffness of 200 N/m². Mass of membrane = 3 grams, centre mass attached to membrane = 20 grams. Find the range of frequencies where it can reduce sounds.

 No, the answer is incorrect.

8. A cut off consists of a stretched membrane with a centimetre mass attached to it. The membrane is clamped into a sub-wavelength waveguide. It is 2 points interesting that the membrane material is in the range of 50 Hz to 350 Hz, where the stiffness of the membrane is 2500 Hz N².

 - 10 Hz to 90 Hz
 - 25 Hz to 90 Hz
 - 55 Hz to 90 Hz
 - 95 Hz to 90 Hz

 No, the answer is incorrect.

9. A cut off consists of a stretched membrane with a centimetre mass attached to it. The membrane is clamped into a sub-wavelength waveguide. It is interesting that the membrane material is in the range of 50 Hz to 350 Hz, where the stiffness of the membrane is 2500 Hz N².

 - Membrane is > 200 grams, centre mass is > 30 grams
 - Membrane is < 200 grams, centre mass is < 30 grams
 - Membrane is = 200 grams, centre mass is = 30 grams
 - Any mass combination will work

 No, the answer is incorrect.

10. A cut off consists of a stretched membrane with a centimetre mass attached to it. The membrane is clamped into a sub-wavelength waveguide. It is interesting that the membrane material is in the range of 50 Hz to 350 Hz, where the stiffness of the membrane is 2500 Hz N².

 - Membrane is 100 grams, centre mass is > 30 grams
 - Membrane is 100 grams, centre mass is = 30 grams
 - Membrane is 100 grams, centre mass is < 30 grams
 - Any mass combination will work

 No, the answer is incorrect.

Due on 2020-03-16, 23:59 GMT.