Week 8 Assignment

The due date for submitting this assignment has passed. **Due on 2018-04-04, 23:59 IST.**

As per our records you have not submitted this assignment.

This assignment contains 10 question. Each question has the individual mark.

1) The number of distinct natural frequencies for an \(n \)-degree-of-freedom system can be

- \(n^{-1} \)
- \(n^2 \)
- \(n^n \)
- \(n \)

No, the answer is incorrect.

Score: 0

Accepted Answers:

- \(n \)

2) The fundamental natural frequency of a system is

- the largest value
- the smallest value
- any value
- none

No, the answer is incorrect.

Score: 0

Accepted Answers:

- the smallest value

3) Derive the equation of motion of system shown in the figure below and select the corresponding stiffness matrix of system.

\[
\begin{bmatrix}
3K & -2K & 0 \\
-2K & 3K & -K \\
0 & -K & 3K
\end{bmatrix}
\]

\[
\begin{bmatrix}
K & -2K & 0 \\
-2K & 3K & -K \\
0 & -K & 3K
\end{bmatrix}
\]
27/07/2020 Introduction to Mechanical Vibration - Unit 9 - Week 8

3 points

No, the answer is incorrect.
Score: 0
Accepted Answers:
\[
\begin{bmatrix}
3K & -2K & -K \\
-2K & 3K & -K \\
-K & -K & 3K
\end{bmatrix}
\]

No, the answer is incorrect.
Score: 0
Accepted Answers:
\[
\begin{bmatrix}
3K & -2K & 0 \\
-2K & 3K & -K \\
0 & -K & 3K
\end{bmatrix}
\]

4) Mass matrix corresponding to the figure below is

\[
\begin{bmatrix}
m & 0 & 0 \\
m & m & 0 \\
m & m & m
\end{bmatrix}
\]

No, the answer is incorrect.
Score: 0
Accepted Answers:
\[
\begin{bmatrix}
m & 0 & 0 \\
0 & m & 0 \\
0 & 0 & m
\end{bmatrix}
\]

No, the answer is incorrect.
Score: 0
Accepted Answers:
\[
\begin{bmatrix}
m & m & m \\
m & m & m \\
m & m & m
\end{bmatrix}
\]

5) The stiffness matrix of the system shown in figure below is

\[
\begin{bmatrix}
3k & -2k & 0 \\
-2k & 3k & -k \\
0 & -k & 3k
\end{bmatrix}
\]
3 points

6) A vibrating system for which

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{bmatrix}, \text{ and } \begin{bmatrix}
1 & -2 & 1 \\
-2 & 4 & -2 \\
1 & -2 & 1
\end{bmatrix}
\]

Determine the eigenvalues for the above system and choose the correct option from the following:

\[\lambda_1 = 0, \lambda_2 = 0, \lambda_3 = 4\]
\[\lambda_1 = 0, \lambda_2 = 2, \lambda_3 = 0\]
\[\lambda_1 = 0, \lambda_2 = 1, \lambda_3 = 4\]
\[\lambda_1 = 9, \lambda_2 = 0, \lambda_3 = 6\]

No, the answer is incorrect.
Score: 0
Accepted Answers:
\[\lambda_1 = 0, \lambda_2 = 0, \lambda_3 = 4\]

7) A vibrating system for which

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{bmatrix}, \text{ and } \begin{bmatrix}
1 & -2 & 1 \\
-2 & 4 & -2 \\
1 & -2 & 1
\end{bmatrix}
\]

Determine the natural frequencies for the above system and choose the correct option from the following:

\[\omega_1 = 0 \text{ rad/s}, \omega_2 = 3 \text{ rad/s}, \omega_3 = 2 \text{ rad/s}\]
\[\omega_1 = 0 \text{ rad/s}, \omega_2 = 1 \text{ rad/s}, \omega_3 = 2 \text{ rad/s}\]
\[\omega_1 = 0 \text{ rad/s}, \omega_2 = 0 \text{ rad/s}, \omega_3 = 2 \text{ rad/s}\]
\[\omega_1 = 2 \text{ rad/s}, \omega_2 = 0 \text{ rad/s}, \omega_3 = 2 \text{ rad/s}\]

No, the answer is incorrect.
Score: 0
Accepted Answers:
8) Derive the equation of motion of system shown in the figure below and calculate the stiffness matrix for the system shown in the figure.

\[
\begin{bmatrix}
2K & 2K & 0 \\
2K & 3K & -K \\
0 & -K & 4K
\end{bmatrix}
\]

\[
\begin{bmatrix}
3K & -2K & 0 \\
-2K & 3K & -K \\
0 & -K & 4K
\end{bmatrix}
\]

\[
\begin{bmatrix}
3K & -2K & 0 \\
-2K & 3K & -K \\
0 & -K & 3K
\end{bmatrix}
\]

No, the answer is incorrect.
Score: 0

Accepted Answers:
\[
\begin{bmatrix}
3K & -2K & 0 \\
-2K & 3K & -K \\
0 & -K & 4K
\end{bmatrix}
\]

9) Derive the equation of motion of system shown in the figure below and choose the stiffness matrix of the system.

\[
\begin{bmatrix}
K1 + K2 & -K2 & 0 \\
-K2 & K2 + K3 & -K4 \\
0 & -K4 & K3 + K4
\end{bmatrix}
\]

\[
\begin{bmatrix}
K1 + K2 & -K2 & 0 \\
-K2 & K2 + K3 & -K3 \\
0 & -K3 & K4
\end{bmatrix}
\]

\[
\begin{bmatrix}
K1 + K2 & -K2 & 0 \\
-K2 & K3 & -K3 \\
0 & -K3 & K4
\end{bmatrix}
\]

\[
\begin{bmatrix}
K1 + K2 & -K2 & 0 \\
-K2 & K2 + K3 & -K3 \\
0 & -K3 & K3 + K4
\end{bmatrix}
\]

No, the answer is incorrect.
Score: 0

Accepted Answers:
\[
\begin{bmatrix}
K1 + K2 & -K2 & 0 \\
-K2 & K2 + K3 & -K3 \\
0 & -K3 & K3 + K4
\end{bmatrix}
\]
10. Derive the equation of motion of the system shown in the figure below and choose the correct damping matrix of the system from the following options.

\[
\begin{bmatrix}
c & 0 & 0 \\
0 & 2c & -c \\
0 & -c & 3c \\
\end{bmatrix}
\]

No, the answer is incorrect.

Score: 0

Accepted Answers:

\[
\begin{bmatrix}
c & 0 & 0 \\
0 & c & -c \\
0 & -c & 3c \\
\end{bmatrix}
\]