Assignment 2

Due on 2020-08-13, 23:59 IST.

1. Dispersed flow models are applicable to:
 - Void fraction less than 0.3
 - Dynamic ratio less than 0.3
 - Negligible relative velocity
 - All of the above

 No, the answer is incorrect.

 Answer:
 Void fraction less than 0.3

 Marks: 1 point

2. For fully developed slug flow in vertical tube, bubble velocity can be written as:
 - \(\frac{dV}{dt} = \frac{1}{1 + \frac{1}{2} \left(\frac{dV}{dt} \right)^2} \)
 - \(\frac{dV}{dt} = \frac{1}{1 - \frac{1}{2} \left(\frac{dV}{dt} \right)^2} \)
 - \(\frac{dV}{dt} = \frac{1}{1 + \frac{1}{2} \left(\frac{dV}{dt} \right)^2} \)
 - \(\frac{dV}{dt} = \frac{1}{1 - \frac{1}{2} \left(\frac{dV}{dt} \right)^2} \)
 - \(\frac{dV}{dt} = \frac{1}{1 - \frac{1}{2} \left(\frac{dV}{dt} \right)^2} \)

 No, the answer is incorrect.

 Answer:
 \(\frac{dV}{dt} = \frac{1}{1 + \frac{1}{2} \left(\frac{dV}{dt} \right)^2} \)

 Marks: 1 point

3. For determination of film thickness in annular flow \(\delta = \frac{\pi d_t d_w}{4} \).

 Value of \(\delta \) is:
 - 0
 - 1
 - 0.5
 - 2
 - 3

 No, the answer is incorrect.

 Answer:
 0.5

 Marks: 1 point

4. In case of emulsified flow with negligible surface tension, wave is generated due to:
 - Taylor-Cullis instability
 - Kelvin-Helmholtz instability
 - Rayleigh-Taylor instability
 - Kelvin-Helmholtz instability
 - Rayleigh-Taylor instability

 No, the answer is incorrect.

 Answer:
 Rayleigh-Taylor instability

 Marks: 1 point

5. Which one is not a part of signal processing circuit of Conductivity probe for gas-liquid flow?
 - Probe
 - Amplifier
 - Filter
 - Diode
 - None of the above

 No, the answer is incorrect.

 Answer:
 None of the above

 Marks: 1 point

6. Consider the flow of air and water inside a vertical tube of 2.5 cm diameter. For this flow investigation, film flows are also to be investigated. Using falling-film approximation, film thickness can be written as, \(\delta = \frac{\pi d_t d_w}{4} \). All students are having their exam seminar. Assume the film flow as Newtonian for which inertial flow rate per unit width can be expressed as \(\dot{m} = \frac{\pi d_t \delta \rho \mu}{2} \). Find the following quantities for the average flow rate of 0.8 \(\times 10^{-3} \) m/s. Take liquid and gas densities as 1000 kg/m³ and 1.2 kg/m³, respectively. Viscosity of liquid is 0.01 kg/ms. More flow rate of the film is
 - 0.4
 - 0.5
 - 0.6
 - 0.7
 - None of the above

 No, the answer is incorrect.

 Answer:
 0.6

 Marks: 1 point

7. Consider the same problem in Q6. Film thickness is in m.

 - 1.737
 - 2.164
 - 2.852
 - 1.249
 - 1.59

 No, the answer is incorrect.

 Answer:
 2.164

 Marks: 1 point

8. Consider the same problem in Q6. The film velocity at \(y = 1 \) mm.

 - 5.42 m/s
 - 7.53 m/s
 - 3.96 m/s
 - 6.25 m/s
 - 4.73 m/s

 No, the answer is incorrect.

 Answer:
 6.25 m/s

 Marks: 1 point

 - 12.137
 - 15.961
 - 15.975
 - 21.142
 - 11.12

 No, the answer is incorrect.

 Answer:
 15.961

 Marks: 1 point

 - 28.45
 - 23.47
 - 26.412
 - 34.26
 - 28.933

 No, the answer is incorrect.

 Answer:
 26.412

 Marks: 1 point