Assignment 6
The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.

Due on: 2021-02-03, 23:59 IST.

1: Leakage through the spool and housing bore for concentric leakage path is given as \(\frac{f}{p} \) \[
\begin{align*}
\text{Leakage} & \quad \text{through the spool and housing bore for concentric leakage path} \\
\text{Ratio of the spool and housing bore} & \quad \text{for concentric leakage path} \\
\text{Leakage} & \quad \text{through the spool and housing bore for concentric leakage path} \\
\end{align*}
\]

No. 1. The pump is: \[\frac{f}{p}\] \[
\begin{align*}
\text{No. 1. The pump is} & \quad \text{the ratio of the spool and housing bore} \\
\text{for concentric leakage path} & \quad \text{the ratio of the spool and housing bore} \\
\text{No. 1. The pump is} & \quad \text{the ratio of the spool and housing bore} \\
\end{align*}
\]

2. Assuming the same pressure drop, if the inner cylinder just touches the outer cylinder time, the flow rate is: \[\frac{f}{p}\] \[
\begin{align*}
\text{Assuming the same pressure drop} & \quad \text{if the inner cylinder just touches the outer cylinder time, the flow rate} \\
\text{No. 2. Assuming the same pressure drop} & \quad \text{if the inner cylinder just touches the outer cylinder time, the flow rate} \\
\text{No. 2. Assuming the same pressure drop} & \quad \text{if the inner cylinder just touches the outer cylinder time, the flow rate} \\
\end{align*}
\]

3. No. 3. The pump is: \[\frac{f}{p}\] \[
\begin{align*}
\text{No. 3. The pump is} & \quad \text{the ratio of the spool and housing bore} \\
\text{No. 3. The pump is} & \quad \text{the ratio of the spool and housing bore} \\
\text{No. 3. The pump is} & \quad \text{the ratio of the spool and housing bore} \\
\end{align*}
\]

4. These are not the characteristics of motors: \[\frac{f}{p}\] \[
\begin{align*}
\text{These are not the characteristics of motors} & \quad \text{torque control throughout the operating speed} \\
\text{No. 4. These are not the characteristics of motors} & \quad \text{torque control throughout the operating speed} \\
\text{No. 4. These are not the characteristics of motors} & \quad \text{torque control throughout the operating speed} \\
\end{align*}
\]

5. Under some pressure relief valves contain a poppet with an area of 400 mm² on which the water pressure acts. During assembly, a spring in a relief valve, at a central spring constant of 450 N/mm is installed in the valve to hold the poppet against the seat. The adjustment mechanism is then set so that the spring is initially compressed by 5 mm from its full-length travel. In order to increase full poppet flow through the valve at all pressures, the relief valve should move 3 mm from its fully closed position. Determine the flow rate of pressure relief valves in [m³/h]. \[\frac{f}{p}\] \[
\begin{align*}
\text{Under some pressure relief valves contain a poppet with an area of 400 mm² on which the water pressure acts} & \quad \text{During assembly, a spring in a relief valve, at a central spring constant of 450 N/mm is installed in the valve to hold the poppet against the seat} \\
\text{The adjustment mechanism is then set so that the spring is initially compressed by 5 mm from its full-length travel} & \quad \text{In order to increase full poppet flow through the valve at all pressures, the relief valve should move 3 mm from its fully closed position} \\
\text{Determine the flow rate of pressure relief valves in [m³/h].} & \quad \text{Determine the flow rate of pressure relief valves in [m³/h].} \\
\end{align*}
\]

This file has 14 page(s), about 39511 character(s).