Assignment 3
The due date for submitting this assignment has passed.

Due on 2021-02-10, 23:59 IST.

As per our records you have not submitted this assignment.

1) Which of these are the hydrodynamic pumps?
 - water pump
 - axial pump
 - centrifugal pump
 - piston pump
 No, the answer is incorrect. Score: 0

 Accepted Answer: water pump, axial pump, centrifugal pump

2) Which of these are the features of hydrodynamic pump?
 - high pressure and high volume flow
 - having single circumferential space between rotating element and stationary element
 - self-priming
 - high pressure and low volume flow
 No, the answer is incorrect. Score: 0

 Accepted Answer: high pressure and high volume flow

3) An ideal pump is the one having
 - no gap between rotor and stator and also no axial deformation
 - no elastic deformation and gap area between rotor and stator
 - no gap between rotor and stator but elastic deformation is there
 - rheological fluid flow to be independent on rheological pressure across the pump
 No, the answer is incorrect. Score: 0

 Accepted Answer: no gap between rotor and stator and also no elastic deformation

4) Which of these is a low flow positive displacement pump?
 - gear pump
 - balanced vane pump
 - screw pump
 - piston pump
 No, the answer is incorrect. Score: 0

 Accepted Answer: gear pump

5) In case of vane pumps, when discharge pressure is zero
 - zero eccentricity between cam ring axis and rotor axis and it results in no flow
 - maximum eccentricity between cam ring axis and rotor axis and it results in no flow
 - minimum eccentricity between cam ring axis and rotor axis and it results in no flow
 - maximum eccentricity between cam ring axis and rotor axis and it results in more flow
 No, the answer is incorrect. Score: 0

 Accepted Answer: minimum eccentricity between cam ring axis and rotor axis and it results in more flow

6) Calculate the rheological delivery of a gear pump. Module of the gear teeth is 8 mm and width of a gear tooth is 50 mm. Number of teeth on outer gear is 19 and pressure angle of the gear is 20°. Pump speed is 1800 rpm. Outer diameter of gear is 156 mm, and volumetric efficiency is 98% at 1 Mpa.
 - 0.77275 m³/min
 - 0.7225 m³/min
 - 0.7275 m³/min
 - 0.71275 m³/min
 No, the answer is incorrect. Score: 0

 Accepted Answer: 0.77275 m³/min

7) A vane pump is to have a volumetric displacement of 8000 cc/min. It has a rotor diameter of 63.8 mm, a casing ring diameter of 76.2 mm, and a vane width of 0.33 mm. What must be the eccentricity?
 - 80.004 mm
 - 63.80 mm
 - 4.98 mm
 - 7.02 mm
 No, the answer is incorrect. Score: 0

 Accepted Answer: 4.98 mm

8) The piston pump is one having
 - internal slippage is less
 - back pressure in the case drain line is very high
 - back pressure in the case drain line is very high
 - basic pressure in the case drain line is very high
 No, the answer is incorrect. Score: 0

 Accepted Answer: basic pressure in the case drain line is very high

9) Which one of these hold good for flat head pumps
 - high pressure low displacement pumps
 - low pressure low displacement pumps
 - geometrical displacement depends on piston size alone
 - geometrical displacement depends on piston size and stroke length
 No, the answer is incorrect. Score: 0

 Accepted Answer: geometrical displacement depends on piston size and stroke length

10) Which one of these hold good for pump cavitation
 - it occurs because suction lift is excessive and the inlet pressure falls below the vapor pressure of the fluid
 - it occurs because suction lift is excessive and the inlet pressure falls below the vapor pressure of the fluid
 - it produces low noise
 - creating a positive head on the inlet will completely eliminate cavitation
 No, the answer is incorrect. Score: 0

 Accepted Answer: it occurs because suction lift is excessive and the inlet pressure falls below the vapor pressure of the fluid creating a positive head on the inlet will completely eliminate cavitation