Assignment 12

Due on 2021-04-14, 23:59 IST.

The due date for submitting this assignment has passed.

As per our records you have not submitted this assignment.

1) The reaction at carbon surface, \(C + CO_2 \rightarrow 2CO \), is an
 - exothermic surface reaction
 - endothermic surface reaction
 - exothermic condensation reaction
 - exothermic recombination reaction
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 - exothermic surface reaction

2) In one-film model,
 - \(CO_2 \) is produced at carbon particle surface
 - \(CO \) is produced at carbon particle surface
 - \(CO \) penetrates towards the surface
 - reduction reaction occurs at the surface
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 - \(CO_2 \) is produced at carbon particle surface

3) In one-film model, total mass flux of carbon is
 - mass flux of \(O \) minus mass flux of \(CO_2 \)
 - mass flux of \(CO_2 \) plus mass flux of \(O \)
 - mass flux of \(CO_2 \) minus mass flux of \(O \)
 - none of the above
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 - mass flux of \(CO_2 \) minus mass flux of \(O \)

4) Resistance to diffusion of oxygen to carbon surface is directly proportional to
 - diffusion coefficient, \(D \)
 - \(D \)
 - \(D^2 \)
 - none of the above
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 - \(D \)

5) Carbon particle combustion is kinetically controlled when
 - particle radius is large
 - particle radius is small
 - temperature is large
 - none of the above
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 - particle radius is small

6) In two-film model, carbon is produced at carbon surface due to its gas-phase reaction with \(O \).
 CO is produced at carbon surface due to its surface reaction with \(CO_2 \).
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 - CO is produced at carbon surface due to its surface reaction with \(CO_2 \).

7) Consider a 250-micron-diameter carbon particle burning in still air (ambient oxygen mass fraction = 0.233) at 1 atm. The kinetic rate constant, \(k_k \), in m³ is calculated as a function of particle surface temperature \(T_p \) as \(3 \times 10^{-10} \div \text{exp}(-17995/T_p) \). Assume the mean molecular weight of the gases at the surface is 28 g/mol. View diffusivity at 450 K, \(D_m = 1.25 \times 10^{-5} \text{ m}^2 \text{s}^{-1} \) and it varies with temperature as \(D_m = 1.7 \times 4.25^{1.5} \). Assuming the oxygen mass fraction at the particle surface is 0.01, the surface temperature \(T_p \), at which the resistance diffusion and resistance to kinetics of surface reaction are the same, is _____.
 Corresponding mass burning rate of carbon (mg/s) is _____.
 Score: 0
 Accepted Answers:
 - 1.24, 0.001596
 - 1.234, 0.001141
 - 1.245, 0.001489
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 - 0.001596

8) In problem 7, if the surface temperature is 1650 K, all other quantities being the same, the mass burning rate of carbon in mg/s is
 - 0.002375
 - 0.002392
 - 0.002029
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 - 0.002375

9) A carbon particle of diameter of 100 microns is burning in air \(\text{F}_{\text{O}_2} = 0.233 \). Surface temperature in 1800 K, and the pressure is 1 atm. Assume the molecular weight of the gases mixture at the particle surface is 30 g/mol, the value of diffusion coefficient of 1.87 \(\times \) \(10^{-5} \text{ m}^2 \text{s}^{-1} \) and surface mass fraction of \(CO_2 \) is 0.0285. Value of transport number is ____. Burning rate of the carbon particle in mg/s is ____.}
 Score: 0
 Accepted Answers:
 - 0.14812, 0.00277
 - 0.12093, 0.00005
 - 0.1203, 0.00049
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 - 0.14812, 0.00277

Download Videos
Test Transcript
Live Session