	Announcements Course Ask a Question Progress Mentor FAQ
Jnit 9 - Wee	:k 7
Course outline	Assignment 7
How to access the portal	The due date for submitting this assignment has passed. Due on 2018-09-19, 23:59 IS As per our records you have not submitted this assignment.
Pre-requisite	analysis?
Week 1	Joint reaction forces between the body segments
Week 2	Segmental kinematics
Week 3	Muscle tensions
Week 4	Segmental parameters such as mass and moment of inertia No the answer is incorrect
Week 5	Score: 0
Week 6	Accepted Answers: Segmental kinematics
Wook 7	Segmental parameters such as mass and moment of inertia
Kinetics: Angular	2) The output from an inverse dynamics analysis consists of the following: 1 p
Motion Part III	 Joint reaction forces between the body segments Segmental kinematics
Kinetics: Angular Motion Part IV	Muscle tensions
 Kinetics of Arm Swinging during Walking 	Segmental parameters such as mass and moment of inertia No the answer is incorrect
Inverse Dynamics Analysis	Score: 0
Week 7 - Lecture	Accepted Answers: Joint reaction forces between the body segments
Notes	3) For a rigid link undergoing general planar motion, 1 p
FEEDBACK -	The angular velocity does not change from point to point in the link
Human	The linear velocity is the same for all points in the link
Quiz :	The angular acceleration varies from point to point on the link
Week 7 Feedback	No, the answer is incorrect. Score: 0

Funded by

Powered by

Week 11	Force Platforms
Week 12	ECG
	VO ₂ Analyser
VIDEO DOWNLOAD	No, the answer is incorrect. Score: 0
	Accepted Answers:
	Force Platforms
	5) A body is more likely to remain in balance even if disturbed, if its 1 point
	Centre of mass lies outside base of support
	Centre of mass lies on the base of support
	Centre of mass remains within the base of support
	Centre of mass is at a low elevation with respect to the ground
	No, the answer is incorrect. Score: 0
	Accepted Answers:
	Centre of mass remains within the base of support Centre of mass is at a low elevation with respect to the ground
	6) Muscle tension calculated from the net joint moment when a single muscle is 1 point assumed to be acting about a joint
	Is likely to be less than the actual muscle tension
	Is an accurate estimate of the actual muscle tension
	Is likely to be an overestimate of the actual muscle tension
	Is unrelated to the net joint moment
	No, the answer is incorrect. Score: 0
	Accepted Answers: Is likely to be less than the actual muscle tension
	7) While drawing the free body diagram of a system the following force(s) is/are NOT 1 point considered
	Weight of the system
	Forces exerted by the system
	Forces exerted at the boundaries on the system
	External forces on the system
	No, the answer is incorrect. Score: 0
	Accepted Answers: Forces exerted by the system
	8) Select the major agonist, antagonist pair that helps a gymnast in maintaining a 1 point straight body posture while swinging down from a bar.
	Back muscles, Abdominal muscles
	Abdominal muscles, Back muscles
	Abdominal muscles, Shoulder Muscles
	Shoulder muscles, Abdominal Muscles
	No, the answer is incorrect.
	Score: 0 Accented Answers:
	הטנפוננע אוושערוש.

9)

Abdominal muscles, Back muscles

Based on the data, Answer from Questions 9-15

A person is doing leg lifts using ankle weights to strengthen his quadriceps muscles.

1 point

Let θ be the angle made by the shank with the vertical axis. At an instant when θ = degrees, ω = 5 rad/s and α = 100 rad/s², and assuming the weight of the shank and foor be 50 N and ankle weights of 10 N, moment arm of the quadriceps muscle about the knee be 4 cm, location of the COM of the shank and foot to be 22 cm from the knee joint, locat of the ankle at 50 cm from the knee, the line of action of the quads muscle to be at degrees to the axis of the lower leg and parallel to the thigh, and the moment of inertia the shank+foot about the knee joint is 0.25 kgm², answer the following (Assume g=10m/s

The new COM of the lower leg is located at _____ from the knee.

O 22.7 cm	
25.7 cm	
26.7 cm	
[─] 50 cm	
No, the answer is incorrect. Score: 0	
Accepted Answers: 26.7 cm	
10)The MOI of the system about the knee is	1 point
\bigcirc 0.25 kgm ²	
O.35 kgm ²	
\bigcirc 0.5 kgm ²	
O.65 kgm ²	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
0.5 kgm ²	
11)The net torque produced about the knee joint is	1 point
O 25 Nm	
O 50 Nm	
⁰ 60 Nm	
70 Nm	

No, the answer is incorrect. Score: 0	
Accepted Answers:	
50 Nm	
12)The tension in the patellar tendon is	1 point
0 488 N	
O 1533 N	
1307 N	
3423 N	
No, the answer is incorrect. Score: 0	
Accepted Answers: 1533 N	
13)The moment of inertia of the system about its CoM is	_ kgm ² 1 point
0.007	
0.07	
0.7	
0 7	
No, the answer is incorrect. Score: 0	
Accepted Answers: 0.07	
14)The reaction force at the tiobiofemoral joint is N	1 point
0 800	
0 684	
0 1384	
925	
No, the answer is incorrect.	
Score: 0	
Accepted Answers: 1384	
15)The net force on the patella is N	1 point
7630	
0 1736	
3 670	
925	
No, the answer is incorrect.	
Accepted Answers:	
1736	
Previous Page	End