Unit 2 - Week 2

Week 2-Assignment 1
The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.

1) Different ways of discretizing the domain are
 - Finite Volume
 - Finite Element
 - Finite Difference
 - All the above

 No, the answer is incorrect.
 Score: 0
 Accepted Answers: All the above

2) If all the nodes of a grid has same element connectivity then it is called unstructured mesh. (True or False)

 No, the answer is incorrect.
 Score: 0
 Accepted Answers: (Type: String) False

3) Advantage of unstructured grid is
 - It solves equation relatively faster
 - It takes time to generate grid
 - More controllable
 - all the above

 No, the answer is incorrect.
 Score: 0
 Accepted Answers: More controllable

4) Body fitted grids can be under the classification of
 - Structured grid
 - Unstructured grid
 - O- and C- type grids
 - All the above

 No, the answer is incorrect.
 Score: 0
 Accepted Answers: All the above

5) Order of accuracy of this scheme
 \[\frac{\partial^2 f}{\partial x^2} = \frac{f_{i+2} - 2f_i + 1 + \Delta x^2}{\Delta x^2} \]
No, the answer is incorrect.
Accepted Answers:
1

6) Compute the second derivative of the function \(f(x) = \sin \left(\frac{\pi x}{4} \right) \) at, \(x = 1.5 \mu \) second-order central difference using a step size of 0.01

-0.56
-0.92
0.5
0.23

No, the answer is incorrect.
Score: 0
Accepted Answers:

7) The third term in Taylor series if \(f(x-(1+\alpha)\Delta x) \) is

\[
\frac{\partial^3 f}{\partial x^3} \left(\frac{(1+\alpha)^3 \Delta x^3}{6} \right)
\]

\[
\frac{\partial^3 f}{\partial x^3} \left(\frac{(1+\alpha) \Delta x^3}{6} \right)
\]

\[
\frac{\partial^3 f}{\partial x^3} \left(\frac{(1+\alpha)^3 \Delta x^3}{3!} \right)
\]

- Both a and c

No, the answer is incorrect.
Score: 0
Accepted Answers:
Both a and c

8) The values of a function at different values of \(x \) are tabulated below. If \(f'(x) = 20.219 \) at \(x = 3 \), given the step size is 0.2, then which finite difference method yields this result?

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>(e^{2.6})</td>
</tr>
<tr>
<td>2.8</td>
<td>(e^{2.8})</td>
</tr>
<tr>
<td>3.0</td>
<td>(e^{3.0})</td>
</tr>
<tr>
<td>3.2</td>
<td>(e^{3.2})</td>
</tr>
<tr>
<td>3.4</td>
<td>(e^{3.4})</td>
</tr>
<tr>
<td>3.6</td>
<td>(e^{3.6})</td>
</tr>
</tbody>
</table>

- Backward difference
- Calculus, that is exact
- Central difference
- Forward difference

No, the answer is incorrect.
Score: 0
Accepted Answers:
Central difference