Assignment 3

1. Consider the following system of linear equations:

 \[\begin{align*}
 2x + 3y &= 7 \\
 4x - y &= 5
 \end{align*} \]

 Solve the system using Gaussian elimination or any other appropriate method.

2. The temperature of a certain object is given by the function
 \[T(t) = 20 + 10\sin(\frac{\pi t}{6}) \]
 where \(t \) is the time in minutes. Find the time at which the temperature is a maximum.

3. A particle moves along a straight line with position \(s(t) \) at time \(t \). If \(s(t) = 3t^2 - 2t + 1 \), find the velocity and acceleration of the particle at \(t = 2 \).

4. Consider the function \(f(x) = \sqrt{x} \) and \(g(x) = x^2 - 4 \). Determine the domain and range of the composite function \(f \circ g \).

5. A company manufactures two products, A and B. The profit from producing \(x \) units of A and \(y \) units of B is given by the function
 \[P(x, y) = 5x + 3y \]
 where \(P \) is in thousands of dollars. If the company needs to produce at least 10 units of A and at least 5 units of B, find the minimum profit.

6. The relationship between the demand and supply of a product is given by the equations
 \[D(p) = 100 - 2p \quad \text{and} \quad S(p) = 20 + 3p \]
 where \(D(p) \) and \(S(p) \) are the demand and supply functions, respectively, measured in units. Find the equilibrium price and quantity.