Assignment 2

1. The mass of the sun at a distance of 1 AU is approximately in the range of 2-3.4 times the mass of the Earth. A distance of 1 AU is the average distance of the Earth from the sun. The specific value is typically:

 a. 2 AU
 b. 3 AU
 c. 2.5 AU
 d. 2.2 AU

2. The mass of the Earth is approximately 5.976 x 10^24 kg. The mass of Venus is approximately 4.867 x 10^24 kg. The value closest to the mass of Venus is:

 a. 1.3 AU
 b. 0.8 AU
 c. 0.9 AU
 d. 0.5 AU

3. The number of hydrogen nuclei required to sustain the continuous expansion of a star with a mass at least equal to the mass of the sun depends on two values: the number of hydrogen nuclei, \(n \), and the number of free electrons, \(e \). These values are related by the equation:

 a. \(n = 2e \)
 b. \(n = 3e \)
 c. \(n = 4e \)
 d. \(n = 5e \)

4. The number of hydrogen nuclei required to sustain the continuous expansion of a star with a mass at least equal to the mass of the sun depends on two values: the number of hydrogen nuclei, \(n \), and the number of free electrons, \(e \). These values are related by the equation:

 a. \(n = 2e \)
 b. \(n = 3e \)
 c. \(n = 4e \)
 d. \(n = 5e \)

5. A plasma rocket produces a thrust that drives a plasma rocket from the surface of the Earth to the moon. The thrust produced by a plasma rocket is given by the equation:

 \[T = \frac{m \cdot V}{t} \]

 where:
 - \(T \) is the thrust
 - \(m \) is the mass of the plasma expelled per unit time
 - \(V \) is the velocity of the plasma expelled
 - \(t \) is the time of the process

 a. \(T = 1 \times 10^7 \text{ N} \)
 b. \(T = 1 \times 10^8 \text{ N} \)
 c. \(T = 1 \times 10^9 \text{ N} \)
 d. \(T = 1 \times 10^10 \text{ N} \)

6. The plasma rocket produces a thrust that drives a plasma rocket from the surface of the Earth to the moon. The thrust produced by a plasma rocket is given by the equation:

 \[T = \frac{m \cdot V}{t} \]

 where:
 - \(T \) is the thrust
 - \(m \) is the mass of the plasma expelled per unit time
 - \(V \) is the velocity of the plasma expelled
 - \(t \) is the time of the process

 a. \(T = 1 \times 10^7 \text{ N} \)
 b. \(T = 1 \times 10^8 \text{ N} \)
 c. \(T = 1 \times 10^9 \text{ N} \)
 d. \(T = 1 \times 10^10 \text{ N} \)

7. The plasma rocket produces a thrust that drives a plasma rocket from the surface of the Earth to the moon. The thrust produced by a plasma rocket is given by the equation:

 \[T = \frac{m \cdot V}{t} \]

 where:
 - \(T \) is the thrust
 - \(m \) is the mass of the plasma expelled per unit time
 - \(V \) is the velocity of the plasma expelled
 - \(t \) is the time of the process

 a. \(T = 1 \times 10^7 \text{ N} \)
 b. \(T = 1 \times 10^8 \text{ N} \)
 c. \(T = 1 \times 10^9 \text{ N} \)
 d. \(T = 1 \times 10^10 \text{ N} \)

8. The plasma rocket produces a thrust that drives a plasma rocket from the surface of the Earth to the moon. The thrust produced by a plasma rocket is given by the equation:

 \[T = \frac{m \cdot V}{t} \]

 where:
 - \(T \) is the thrust
 - \(m \) is the mass of the plasma expelled per unit time
 - \(V \) is the velocity of the plasma expelled
 - \(t \) is the time of the process

 a. \(T = 1 \times 10^7 \text{ N} \)
 b. \(T = 1 \times 10^8 \text{ N} \)
 c. \(T = 1 \times 10^9 \text{ N} \)
 d. \(T = 1 \times 10^10 \text{ N} \)

9. The plasma rocket produces a thrust that drives a plasma rocket from the surface of the Earth to the moon. The thrust produced by a plasma rocket is given by the equation:

 \[T = \frac{m \cdot V}{t} \]

 where:
 - \(T \) is the thrust
 - \(m \) is the mass of the plasma expelled per unit time
 - \(V \) is the velocity of the plasma expelled
 - \(t \) is the time of the process

 a. \(T = 1 \times 10^7 \text{ N} \)
 b. \(T = 1 \times 10^8 \text{ N} \)
 c. \(T = 1 \times 10^9 \text{ N} \)
 d. \(T = 1 \times 10^10 \text{ N} \)