Solution of Assignment 5

1. Ans:b DEOM for transverse vibrations of string can be written as,

\[\rho Aw_{tt} - Tw_{xx} = \mathcal{R}[Q(x)e^{i\Omega t}] \] \hfill (1)

Boundary value problem of (1) can be formulated as,

\[-\Omega^2 \mu(x) X(x) + \mathcal{K}[X(x)] = Q(x) \] \hfill (2)

where, \(\mu(x) \) is the unknown amplitude function of particular solution of (1). Let \(G(x, \bar{x}, \Omega) \) be the solution of (2) with concentrated unit force at \(x = \bar{x} \in [0,l] \). So, (2) can be modified as,

\[-\Omega^2 G(x, \bar{x}, \Omega) - c^2 G_{xx}(x, \bar{x}, \Omega) = \frac{1}{\rho A} \delta(x - \bar{x}) \] \hfill (3)

where, \(\mu(x) = 1 \) and \(\mathcal{K}[w] = -c^2 w_{xx} \). We can consider two regions of string as follows:

\[-\Omega^2 G - c^2 G_{xx} = 0, \quad 0 \leq x < \bar{x} \]
\[-\Omega^2 G - c^2 G_{xx} = 0, \quad \bar{x} \leq x < l \] \hfill (4)

Solution of (4) can be written as,

\[G(x, \bar{x}, \Omega) = A_L \sin \frac{\Omega x}{c} + B_L \cos \frac{\Omega x}{c}, \quad 0 \leq x < \bar{x} \]
\[= A_R \sin \frac{\Omega x}{c} + B_R \cos \frac{\Omega x}{c}, \quad \bar{x} \leq x < l \] \hfill (5)

Boundary conditions to be used are as follows:

\[G_x(0, \bar{x}, \Omega) = 0 \]
\[G(l, \bar{x}, \Omega) = 0 \] \hfill (6)

Along with (6), continuity and force balance at \(x = \bar{x} \) will be used.

\[G_x(\bar{x}^-, \bar{x}, \Omega) = G_x(\bar{x}^+, \bar{x}, \Omega) \]
\[\int_0^l (-\Omega^2 G - c^2 G_{xx}) dx = \frac{1}{\rho A} \int_0^l \delta(x - \bar{x}) dx = \frac{1}{\rho A} \] \hfill (7)

Integrand at LHS of force balance equation is zero except at \(x = \bar{x} \), so we can write,

\[\lim_{\epsilon \to 0} \int_{\bar{x} - \epsilon}^{\bar{x} + \epsilon} (\Omega^2 G + c^2 G_{xx}) dx = -\frac{1}{\rho A} \] \hfill (8)
As G is continuous function of x, so its integration over such a small interval (2ϵ) will be zero. So $\Omega^2 G$ will not contribute anything in the integral. so (8) becomes,

$$\lim_{\epsilon \to 0} c^2 \int_{\bar{x}-\epsilon}^{\bar{x}+\epsilon} (G_{xx}) dx = -\frac{1}{\rho A}$$

$$\Rightarrow \lim_{\epsilon \to 0} c^2 [G_{x}(\bar{x} + \epsilon) - G_{x}(\bar{x} - \epsilon)] = -\frac{1}{\rho A}$$

$$\Rightarrow c^2 [G_{x}(\bar{x}^+, \bar{x}, \Omega) - G_{x}(\bar{x}^-, \bar{x}, \Omega)] = -\frac{1}{\rho A} \quad (9)$$

(5) and (6) gives,

$$A_L = 0, \quad A_R \sin \frac{\Omega l}{c} + B_R \cos \frac{\Omega l}{c} = 0 \quad (10)$$

Substituting (5) in continuity equation at $x = \bar{x}$ (7), we get,

$$(B_R - B_L) \cos \frac{\Omega \bar{x}}{c} + A_R \sin \frac{\Omega \bar{x}}{c} = 0 \quad (11)$$

Substituting (5) in force balance equation (9), we get,

$$-(B_R - B_L) \sin \frac{\Omega \bar{x}}{c} + A_R \cos \frac{\Omega \bar{x}}{c} = -\frac{1}{\rho A \Omega c} \quad (12)$$

Solving (10), (11) and (12), we get,

$$A_R = -\frac{1}{\rho A \Omega c} \cos \frac{\Omega \bar{x}}{c}$$

$$B_R = \frac{1}{\rho A \Omega c} \cos \frac{\Omega \bar{x}}{c} \tan \frac{\Omega l}{c}$$

$$B_L = \frac{1}{\rho A \Omega c} \sin \frac{\Omega (l - \bar{x})}{c} \sec \frac{\Omega l}{c} \quad (13)$$

Using (10) and (13), we can write,

$$G(x, \bar{x}, \Omega) = \begin{cases}
\sin \frac{\Omega (l - \bar{x})}{c} \cos \frac{\Omega x}{c}, & \text{for } 0 \leq x \leq \bar{x} \\
\rho A \Omega c \cos \frac{\Omega l}{c} \sin \frac{\Omega (l - x)}{c} \cos \frac{\Omega \bar{x}}{c}, & \text{for } \bar{x} \leq x \leq l
\end{cases}$$
2. Ans: \textbf{d} Statement A and C both are correct. Refer lecture 15 for the details.

3. Ans: \textbf{a} Boundary conditions for this problem are,

\begin{align*}
EAu_x(0, t) &= d_1 u_x(0, t) \\
EAu_x(l, t) &= -d_2 u_x(l, t)
\end{align*}

(14)

Let displacement field \(u(x, t) \) for longitudinal vibrations of bar is \(u(x, t) = U(x) e^{st} \) where \(s \) is the complex number. Substituting the displacement form in DEOM of free vibration, we get ordinary differential equation in \(U(x) \). Solution of that can be written as,

\[U(x) = Be^{sx/c} + Ce^{-sx/c} \]

(15)

From (14) and (15), we get algebraic equations in \(B \) and \(C \).

\begin{align*}
B(1 - a_1) - C(1 + a_1) &= 0 \\
B(1 + a_2)e^\gamma - C(1 - a_2)e^{-\gamma} &= 0
\end{align*}

(16)

where, \(\gamma = \frac{sl}{c} \) and \(a_i = \frac{cd_i}{EA} \). For non-trivial solutions of (16), determinant of coefficient matrix should vanish. It gives,

\[e^{2\gamma} = \frac{(a_1 - 1)(a_2 - 1)}{(a_1 + 1)(a_2 + 1)} \]

4. Ans: \textbf{c} Substitution of assumed general solution form \(w(x, t) = a(t) \sin \frac{\pi x}{l} \) in DEOM \(\rho A w_{tt} - Tw_{xx} + dw_{tt} = 0 \), we get,

\[\ddot{a} + \frac{d}{\rho A} \dot{a} + \frac{\pi^2 c^2}{l^2} a = 0 \]

where \(c^2 = \frac{T}{\rho A} \). Comparing it with standard form of DEOM for free damped vibration \(\ddot{a} + 2\xi \omega \dot{a} + \omega^2 a = 0 \), we get,

\[\omega = \frac{\pi c}{l} \text{ and } \xi = \frac{dl}{2\pi \rho Ac} \]