Week 2 Assignment

The due date for submitting this assignment has passed.

Due on 2017-02-09, 11:59 IST.

Submitted assignment

1) Complex signals have ___________.
 - magnitude.
 - phase.
 - both magnitude and phase.
 - neither magnitude nor phase.

2) Consider a signal,
 \[x(t) = \text{Re} \left(A e^{(JD+(-JC)/t)} \right) \]
 What is the phase of \(x(t) \) ? (A, B, C and D are positive constants)
 - A
 - B
 - C
 - D

3) Consider a signal,
 \[x(t) = \text{Re} \left(A e^{(JD+(B-JC)/t)} \right) \]
 What can we conclude about decay or growth of \(x(t) \) ? (A, B, C and D are positive constants)
 - \(x(t) \) will grow with rate of growth of C.
 - \(x(t) \) will grow with rate of growth of B.
 - \(x(t) \) will decay with rate of decay of C.
 - \(x(t) \) will decay with rate of decay of B.

4) Which of the following systems is linear in 'X' ?

1 point
5) What is an ideal value of system function at poles?
- Zero
- Unity
- Infinity
- Finite and non-zero

6) Which of the following option is not correct regarding the transfer function?
- Transfer function is defined as a mathematical representation of a system’s response with respect to stimulus.
- Transfer function is applied in transient response region of the system.
- Transfer function can be applied to linear system.
- All the options are correct.

7) Which of the following option can be considered as a transfer function?
- \(H(s) = \frac{\text{Output current}}{\text{Input current}} \)
- \(H(s) = \frac{\text{Output current}}{\text{Input voltage}} \)
- \(H(s) = \frac{\text{Output voltage}}{\text{Input current}} \)
- All of the options can be considered as transfer functions.

8) If \(H(\omega) = \frac{1}{\omega} \), how is \(H(\omega) \) represented on the magnitude Bode plot?
- \(-10 \log(\omega) \text{ dB}\)
- \(-20 \log(\omega) \text{ dB}\)
- \(-40 \log(\omega) \text{ dB}\)
- \(-60 \log(\omega) \text{ dB}\).

Previous Page

End
Week 10: Reverb time and FFT

Week 11: Weighting and loudness

Week 12: Miscellaneous topics and closure