Assignment 04

We due date for submitting this assignment is 14th October 23:59 IST. As per our records you have not submitted this assignment.

1. Assuming linear velocity profile, \(\frac{u}{u_0} = \frac{x}{L} \), and using approximate momentum integral method, find the expression for boundary layer thickness \(\delta \).
 \[\delta = \frac{2}{\sqrt{u_0}} \]

2. For boundary layer flow on wedge shaped body, what is the condition for 2D stagnation flow?
 \[m = 0 \]
 \[m = 0.5 \]
 \[m = 1 \]
 \[m = 2 \]

3. What is the non-dimensional equation obtained from the below given energy equation?
 \[\frac{\rho}{\rho_0} \left(\frac{u}{u_0} \right)^2 + \frac{\rho}{\rho_0} \left(\frac{v}{v_0} \right)^2 + \frac{\rho}{\rho_0} \left(\frac{w}{w_0} \right)^2 = \frac{T}{T_0} \]
 \[\frac{\rho}{\rho_0} \left(\frac{u}{u_0} \right)^2 + \frac{\rho}{\rho_0} \left(\frac{v}{v_0} \right)^2 + \frac{\rho}{\rho_0} \left(\frac{w}{w_0} \right)^2 = 0 \]
 \[\frac{\rho}{\rho_0} \left(\frac{u}{u_0} \right)^2 + \frac{\rho}{\rho_0} \left(\frac{v}{v_0} \right)^2 + \frac{\rho}{\rho_0} \left(\frac{w}{w_0} \right)^2 = \frac{T}{T_0} \]
 \[\frac{\rho}{\rho_0} \left(\frac{u}{u_0} \right)^2 + \frac{\rho}{\rho_0} \left(\frac{v}{v_0} \right)^2 + \frac{\rho}{\rho_0} \left(\frac{w}{w_0} \right)^2 = \frac{T}{T_0} \]

4. Assuming cubic temperature profile, \(T = \alpha x + \beta y + \gamma z \)

5. For a flow over an isothermal flat plate. Applying the boundary conditions for boundary layer flows express \(\Gamma \) in terms of \(\delta \) (thermal boundary layer).

6. For flow over a flat plate with uniform surface heat flux (shown in figure), assuming cubic velocity and cubic temperature profile, find the constant \(\alpha \) for the expression given below.

\[\frac{T}{T_0} = \frac{1}{1 - \frac{x}{L}} \]