Assignment 03

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.

Due on 2020-10-07, 22:00 IST.

1) The Falkner-Skan equation related to boundary layer flow over a wedge is a
 ○ Third order, linear PDE
 ○ Third order, non-linear PDE
 ○ Third order, non-linear ODE
 ○ Third order, linear ODE
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 Third order, non-linear ODE

2) For the given real temperature variation for flat plate, \(T(x) = T_0 +Cx \), where \(C \) is some constant. We can achieve uniform heat flux condition at flat plate for \(x = \) ______
 ![Diagram]
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 (Type: Number) 0.5

3) Which of the following is NOT an assumption for boundary layer flows
 ○ Navier-Stokes fluid flow
 ○ High Reynolds number flow
 ○ Laminar flow
 ○ None of these
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 None of these

4) For boundary layer flows on wedge shaped body, with wedge angle \(\theta \), and wedge parameter \(m \), free stream velocity in such wedge flows is of the form \(U_0 = \text{c} \text{m}^m \). What is the relation between \(m \) and \(\beta \)
 ○ \(\beta = \frac{m}{3} \)
 ○ \(\beta = \frac{m}{5} \)
 ○ \(\beta = \frac{m}{4} \)
 ○ Independent of each other
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 \(\beta = \frac{m}{4} \)

5) For the velocity profile, \(\frac{\nu}{\nu} = \left(\frac{x}{h} \right) - \left(\frac{x}{h} \right)^3 \), the shape factor \(\beta = \frac{\nu}{\nu} \) (ratio of displacement thickness to momentum thickness).
 ○ \(\beta = 0.1 \)
 ○ \(\beta = 0.3 \)
 ○ \(\beta = 0.5 \)
 ○ \(\beta = 0.7 \)
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 \(\beta = 0.5 \)

6) For boundary layer flows, if the fluid properties are assumed to be constant, the velocity field will be independent of the temperature field.
 ○ True
 ○ False
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 True

7) At the leading edge of flat plate, the boundary layer approximations are NOT valid
 ○ True
 ○ False
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 True

8) For the velocity profile, \(\frac{\nu}{\nu} = \frac{1}{3} \), find the ratio \(\frac{\gamma}{\delta} \) where, \(\gamma \) is the displacement thickness and \(\delta \) is the boundary layer thickness.
 ○ 0.5
 ○ 0.2
 ○ 0.1
 ○ 0.05
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 0.5